193 research outputs found
Self-organizing & stochastic behaviors during the regeneration of hair stem cells
Stem cells cycle through active and quiescent states. Large populations of stem cells in an organ may cycle randomly or in a coordinated manner. Although stem cell cycling within single hair follicles has been studied, less is known about regenerative behavior in a hair follicle population. By combining predictive mathematical modeling with in vivo studies in mice and rabbits, we show that a follicle progresses through cycling stages by continuous integration of inputs from intrinsic follicular and extrinsic environmental signals based on universal patterning principles. Signaling from the WNT/bone morphogenetic protein activator/inhibitor pair is coopted to mediate interactions among follicles in the population. This regenerative strategy is robust and versatile because relative activator/inhibitor strengths can be modulated easily, adapting the organism to different physiological and evolutionary needs
Distinct mechanisms underlie pattern formation in the skin and skin appendages
Patterns form with the break of homogeneity and lead to the emergence of new structure or arrangement. There are different physiological and pathological mechanisms that lead to the formation of patterns. Here, we first introduce the basics of pattern formation and their possible biological basis. We then discuss different categories of skin patterns and their potential underlying molecular mechanisms. Some patterns, such as the lines of Blaschko and Naevus, are based on cell lineage and genetic mosaicism. Other patterns, such as regionally specific skin appendages, can be set by distinct combinatorial molecular codes, which in turn may be set by morphogenetic gradients. There are also some patterns, such as the arrangement of hair follicles (hair whorls) and fingerprints, which involve genetics as well as stochastic epigenetic events based on physiochemical principles. Many appendage primordia are laid out in developmental waves. In the adult, some patterns, such as those involving cycling hair follicles, may appear as traveling waves in mice. Since skin appendages can renew themselves in regeneration, their size and shape can still change in the adult via regulation by hormones and the environment. Some lesion patterns are based on pathological changes involving the above processes and can be used as diagnostic criteria in medicine. Understanding the different mechanisms that lead to patterns in the skin will help us appreciate their full significance in morphogenesis and medical research. Much remains to be learned about complex pattern formation, if we are to bridge the gap between molecular biology and organism phenotypes. Birth Defects Research (Part C) 78:280-291, 2006. © 2006 Wiley-Liss, Inc
Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration
In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life1, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge2 are regulated by the surrounding microenvironment, or niche3. The activation of such stem cells is cyclic, involving periodic -catenin activity4, 5, 6, 7. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug delivery and stem cell engineering studies, because they highlight the acute need to differentiate supportive versus inhibitory regions in the host skin
MAGIA, a web-based tool for miRNA and Genes Integrated Analysis
MAGIA (miRNA and genes integrated analysis) is a novel web tool for the integrative analysis of target predictions, miRNA and gene expression data. MAGIA is divided into two parts: the query section allows the user to retrieve and browse updated miRNA target predictions computed with a number of different algorithms (PITA, miRanda and Target Scan) and Boolean combinations thereof. The analysis section comprises a multistep procedure for (i) direct integration through different functional measures (parametric and non-parametric correlation indexes, a variational Bayesian model, mutual information and a meta-analysis approach based on P-value combination) of mRNA and miRNA expression data, (ii) construction of bipartite regulatory network of the best miRNA and mRNA putative interactions and (iii) retrieval of information available in several public databases of genes, miRNAs and diseases and via scientific literature text-mining. MAGIA is freely available for Academic users at http://gencomp.bio.unipd.it/magia
Sustainable business development vision under the covid-19 pandemic
This article considers the issues of forming sustainable business development strategies in the context of the COVID-19 pandemic. The authors noted that the COVID-19 pandemic significantly affected the business environment, changing each country’s economy’s priorities and principles of functioning. The study’s main goal is to analyze the impact of quarantine measures and the pandemic on sustainable business development. The article examines the positive and negative COVID-19 influence on economic development
Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration
Tissue development and regeneration depend on cell-cell interactions and signals that target stem cells and their immediate progeny. However, the cellular behaviours that lead to a properly regenerated tissue are not well understood. Using a new, non-invasive, intravital two-photon imaging approach we study physiological hair-follicle regeneration over time in live mice. By these means we have monitored the behaviour of epithelial stem cells and their progeny during physiological hair regeneration and addressed how the mesenchyme influences their behaviour. Consistent with earlier studies, stem cells are quiescent during the initial stages of hair regeneration, whereas the progeny are more actively dividing. Moreover, stem cell progeny divisions are spatially organized within follicles. In addition to cell divisions, coordinated cell movements of the progeny allow the rapid expansion of the hair follicle. Finally, we show the requirement of the mesenchyme for hair regeneration through targeted cell ablation and long-term tracking of live hair follicles. Thus, we have established an in vivo approach that has led to the direct observation of cellular mechanisms of growth regulation within the hair follicle and that has enabled us to precisely investigate functional requirements of hair-follicle components during the process of physiological regeneration. © 2012 Macmillan Publishers Limited. All rights reserved
An open source infrastructure for managing knowledge and finding potential collaborators in a domain-specific subset of PubMed, with an example from human genome epidemiology
<p>Abstract</p> <p>Background</p> <p>Identifying relevant research in an ever-growing body of published literature is becoming increasingly difficult. Establishing domain-specific knowledge bases may be a more effective and efficient way to manage and query information within specific biomedical fields. Adopting controlled vocabulary is a critical step toward data integration and interoperability in any information system. We present an open source infrastructure that provides a powerful capacity for managing and mining data within a domain-specific knowledge base. As a practical application of our infrastructure, we presented two applications – Literature Finder and Investigator Browser – as well as a tool set for automating the data curating process for the human genome published literature database. The design of this infrastructure makes the system potentially extensible to other data sources.</p> <p>Results</p> <p>Information retrieval and usability tests demonstrated that the system had high rates of recall and precision, 90% and 93% respectively. The system was easy to learn, easy to use, reasonably speedy and effective.</p> <p>Conclusion</p> <p>The open source system infrastructure presented in this paper provides a novel approach to managing and querying information and knowledge from domain-specific PubMed data. Using the controlled vocabulary UMLS enhanced data integration and interoperability and the extensibility of the system. In addition, by using MVC-based design and Java as a platform-independent programming language, this system provides a potential infrastructure for any domain-specific knowledge base in the biomedical field.</p
Human Capital Quality Assurance under the Conditions of Digital Business Transformation and COVID-19 Impact
This article addresses human capital quality and development analysis under the digital transformation and economic changes effected by the COVID-19 pandemic. The primary goal of this study is to justify the theoretical and methodological provisions for developing an environment of innovation, assuring the digitalization of society through innovation activity of economic entities and human capital development by ensuring its quality under the COVID-19
Recommended from our members
Author Correction: MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists
MicroRNA-mediated post-transcriptional regulation plays key roles in stem cell self-renewal and tumorigenesis. However, the in vivo functions of specific microRNAs in controlling mammary stem cell (MaSC) activity and breast cancer formation remain poorly understood. Here we show that miR-31 is highly expressed in MaSC-enriched mammary basal cell population and in mammary tumors, and is regulated by NF-κB signaling. We demonstrate that miR-31 promotes mammary epithelial proliferation and MaSC expansion at the expense of differentiation in vivo. Loss of miR-31 compromises mammary tumor growth, reduces the number of cancer stem cells, as well as decreases tumor-initiating ability and metastasis to the lung, supporting its pro-oncogenic function. MiR-31 modulates multiple signaling pathways, including Prlr/Stat5, TGFβ and Wnt/β-catenin. Particularly, it activates Wnt/β-catenin signaling by directly targeting Wnt antagonists, including Dkk1. Importantly, Dkk1 overexpression partially rescues miR31-induced mammary defects. Together, these findings identify miR-31 as the key regulator of MaSC activity and breast tumorigenesis
- …