63 research outputs found

    Including debris cover effects in a distributed model of glacier ablation

    Get PDF
    Distributed glacier melt models generally assume that the glacier surface consists of bare exposed ice and snow. In reality, many glaciers are wholly or partially covered in layers of debris that tend to suppress ablation rates. In this paper, an existing physically based point model for the ablation of debris-covered ice is incorporated in a distributed melt model and applied to Haut Glacier d’Arolla, Switzerland, which has three large patches of debris cover on its surface. The model is based on a 10 m resolution digital elevation model (DEM) of the area; each glacier pixel in the DEM is defined as either bare or debris-covered ice, and may be covered in snow that must be melted off before ice ablation is assumed to occur. Each debris-covered pixel is assigned a debris thickness value using probability distributions based on over 1000 manual thickness measurements. Locally observed meteorological data are used to run energy balance calculations in every pixel, using an approach suitable for snow, bare ice or debris-covered ice as appropriate. The use of the debris model significantly reduces the total ablation in the debris-covered areas, however the precise reduction is sensitive to the temperature extrapolation used in the model distribution because air near the debris surface tends to be slightly warmer than over bare ice. Overall results suggest that the debris patches, which cover 10% of the glacierized area, reduce total runoff from the glacierized part of the basin by up to 7%

    Geomorphological evolution of a debris‐covered glacier surface

    Get PDF
    There exists a need to advance our understanding of debris‐covered glacier surfaces over relatively short timescales due to rapid, climatically induced areal expansion of debris cover at the global scale, and the impact debris has on mass balance. We applied unpiloted aerial vehicle structure‐from‐motion (UAV‐SfM) and digital elevation model (DEM) differencing with debris thickness and debris stability modelling to unravel the evolution of a 0.15 km2 region of the debris‐covered Miage Glacier, Italy, between June 2015 and July 2018. DEM differencing revealed widespread surface lowering (mean 4.1 ± 1.0 m a‐1; maximum 13.3 m a‐1). We combined elevation change data with local meteorological data and a sub‐debris melt model, and used these relationships to produce high resolution, spatially distributed maps of debris thickness. These maps were differenced to explore patterns and mechanisms of debris redistribution. Median debris thicknesses ranged from 0.12 to 0.17 m and were spatially variable. We observed localized debris thinning across ice cliff faces, except those which were decaying, where debris thickened. We observed pervasive debris thinning across larger, backwasting slopes, including those bordered by supraglacial streams, as well as ingestion of debris by a newly exposed englacial conduit. Debris stability mapping showed that 18.2–26.4% of the survey area was theoretically subject to debris remobilization. By linking changes in stability to changes in debris thickness, we observed that slopes that remain stable, stabilize, or remain unstable between periods almost exclusively show net debris thickening (mean 0.07 m a‐1) whilst those which become newly unstable exhibit both debris thinning and thickening. We observe a systematic downslope increase in the rate at which debris cover thickens which can be described as a function of the topographic position index and slope gradient. Our data provide quantifiable insights into mechanisms of debris remobilization on glacier surfaces over sub‐decadal timescales, and open avenues for future research to explore glacier‐scale spatiotemporal patterns of debris remobilization

    Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretative problems

    Get PDF
    © 2016 Swedish Society for Anthropology and Geography Periglacial patterned ground (sorted circles and polygons) along an altitudinal profile at Juvflya in central Jotunheimen, southern Norway, is investigated using Schmidt-hammer exposure-age dating (SHD). The patterned ground surfaces exhibit R-value distributions with platycurtic modes, broad plateaus, narrow tails, and a negative skew. Sample sites located between 1500 and 1925 m a.s.l. indicate a distinct altitudinal gradient of increasing mean R-values towards higher altitudes interpreted as a chronological function. An established regional SHD calibration curve for Jotunheimen yielded mean boulder exposure ages in the range 6910 ± 510 to 8240 ± 495 years ago. These SHD ages are indicative of the timing of patterned ground formation, representing minimum ages for active boulder upfreezing and maximum ages for the stabilization of boulders in the encircling gutters. Despite uncertainties associated with the calibration curve and the age distribution of the boulders, the early-Holocene age of the patterned ground surfaces, the apparent cessation of major activity during the Holocene Thermal Maximum (HTM) and continuing lack of late-Holocene activity clarify existing understanding of the process dynamics and palaeoclimatic significance of large-scale sorted patterned ground as an indicator of a permafrost environment. The interpretation of SHD ages from patterned ground surfaces remains challenging, however, owing to their diachronous nature, the potential for a complex history of formation, and the influence of local, non-climatic factors

    Buoyant calving and ice-contact lake evolution at Pasterze Glacier (Austria) in the period 1998-2019

    Get PDF
    This research has been supported by the Austrian Science Fund (grant no. FWF P18304-N10), the Hohe Tauern National Park authority (several projects), the Glockner-Öko-Fonds (GROHAG 2018), and the Austrian Alpine Association (through the annual glacier monitoring programme).Rapid growth of proglacial lakes in the current warming climate can pose significant outburst flood hazards, increase rates of ice mass loss, and alter the dynamic state of glaciers. We studied the nature and rate of proglacial lake evolution at Pasterze Glacier (Austria) in the period 1998–2019 using different remote-sensing (photogrammetry, laser scanning) and fieldwork-based (global navigation satellite system – GNSS, time-lapse photography, geoelectrical resistivity tomography – ERT, and bathymetry) data. Glacier thinning below the spillway level and glacier recession caused flooding of the glacier, initially forming a glacier-lateral to supraglacial lake with subaerial and subaquatic debris-covered dead-ice bodies. The observed lake size increase in 1998–2019 followed an exponential curve (1998 – 1900 m2, 2019 – 304 000 m2). ERT data from 2015 to 2019 revealed widespread existence of massive dead-ice bodies exceeding 25 m in thickness near the lake shore. Several large-scale and rapidly occurring buoyant calving events were detected in the 48 m deep basin by time-lapse photography, indicating that buoyant calving is a crucial process for the fast lake expansion. Estimations of the ice volume losses by buoyant calving and by subaerial ablation at a 0.35 km2 large lake-proximal section of the glacier reveal comparable values for both processes (ca. 1×106 m3) for the period August 2018 to August 2019. We identified a sequence of processes: glacier recession into a basin and glacier thinning below the spillway level; glacio-fluvial sedimentation in the glacial–proglacial transition zone covering dead ice; initial formation and accelerating enlargement of a glacier-lateral to supraglacial lake by ablation of glacier ice and debris-covered dead ice forming thermokarst features; increase in hydrostatic disequilibrium leading to destabilization of ice at the lake bottom or at the near-shore causing fracturing, tilting, disintegration, or emergence of new icebergs due to buoyant calving; and gradual melting of icebergs along with iceberg capsizing events. We conclude that buoyant calving, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley or cirque overdeepenings.Publisher PDFPeer reviewe

    Recent interannual variations of rock glacier creep in the European Alps

    Full text link
    Recent interannual variations of rock glacier surface motion are compared for 16 landforms monitored for a few years in various parts of the European Alps. Large fluctuations have been observed particularly since 2002. Most investigated rock glaciers have shown a similar behavior whatever their location in the Alpine arc, their size, or their velocity. The observed interannual variations appear to be primarily related to external climatic factors rather than to internal characteristics. They are mostly well correlated with mean annual ground surface temperature shifts with a delay of a few months, reflecting the thermal wave propagation deeper into permafrost. Seasonal factors may also play a significant role: a lower intensity of winter ground freezing and/or a larger winter snow accumulation appear to facilitate a higher rate of rock glacier surface motion

    Hazards related to permafrost and to permafrost degradation

    No full text
    Chapter 4: Rockfalls. In: Schoeneich P. et al. (eds): Hazards related to permafrost and to permafrost degradation. PermaNET project, State-of-the-art report WP6.2

    Velocity Changes of Rock Glaciers and Induced Hazards

    No full text

    Brief communication: "An inventory of permafrost evidence for the European Alps"

    Get PDF
    The investigation and modelling of permafrost distribution, particularly in areas of discontinuous permafrost, is challenging due to spatial heterogeneity, remoteness of measurement sites and data scarcity. We have designed a strategy for standardizing different local data sets containing evidence of the presence or absence of permafrost into an inventory for the entire European Alps. With this brief communication, we present the structure and contents of this inventory. This collection of permafrost evidence not only highlights existing data and allows new analyses based on larger data sets, but also provides complementary information for an improved interpretation of monitoring results
    • 

    corecore