52 research outputs found

    User considerations in assessing pharmacogenomic tests and their clinical support tools

    Get PDF
    Pharmacogenomic (PGx) testing is gaining recognition from physicians, pharmacists and patients as a tool for evidence-based medication management. However, seemingly similar PGx testing panels (and PGx-based decision support tools) can diverge in their technological specifications, as well as the genetic factors that determine test specificity and sensitivity, and hence offer different values for users. Reluctance to embrace PGx testing is often the result of unfamiliarity with PGx technology, a lack of knowledge about the availability of curated guidelines/evidence for drug dosing recommendations, and an absence of wide-spread institutional implementation efforts and educational support. Demystifying an often confusing and variable PGx marketplace can lead to greater acceptance of PGx as a standard-of-care practice that improves drug outcomes and provides a lifetime value for patients. Here, we highlight the key underlying factors of a PGx test that should be considered, and discuss the current progress of PGx implementation

    Efficacy assessment of sustained intraperitoneal paclitaxel therapy in a murine model of ovarian cancer using bioluminescent imaging

    Get PDF
    We evaluated the pre-clinical efficacy of a novel intraperitoneal (i.p.) sustained-release paclitaxel formulation (PTXePC) using bioluminescent imaging (BLI) in the treatment of ovarian cancer. Human ovarian carcinoma cells stably expressing the firefly luciferase gene (SKOV3Luc) were injected i.p. into SCID mice. Tumour growth was evaluated during sustained or intermittent courses of i.p. treatment with paclitaxel (PTX). In vitro bioluminescence strongly correlated with cell survival and cytotoxicity. Bioluminescent imaging detected tumours before their macroscopic appearance and strongly correlated with tumour weight and survival. As compared with intermittent therapy with Taxol®, sustained PTXePC therapy resulted in significant reduction of tumour proliferation, weight and BLI signal intensity, enhanced apoptosis and increased survival times. Our results demonstrate that BLI is a useful tool in the pre-clinical evaluation of therapeutic interventions for ovarian cancer. Moreover, these results provide evidence of enhanced therapeutic efficacy with the sustained PTXePC implant system, which could potentially translate into successful clinical outcomes

    Heart and systemic effects of statin pretreatment in a rat model of abdominal sepsis. Assessment by Tc99m-sestamibi biodistribition

    Full text link
    PURPOSE: To evaluate the heart and the Tc-99m-sestamibi biodistribution after statin pretreatment in a rat model of abdominal sepsis. METHODS: Twenty-four Wistar rats were randomly distributed into four groups (n=6 per group): 1) sepsis with simvastatin treatment, 2) sepsis with vehicle, 3) sham control with simvastatin and 4) sham control with vehicle. 24 hours after cecal ligation and puncture rats received 1.0MBq of Tc-99m-sestamibi i.v. 30min after, animals were euthanized for ex-vivo tissue counting and myocardium histological analysis. RESULTS: Myocardial histologic alterations were not detected 24 hours post-sepsis. There was significantly increased cardiac Tc-99m-sestamibi activity in the sepsis group with simvastatin treatment (1.9±\pm0.3%ID/g, p<0.001) in comparison to the sepsis group+vehicle (1.0±\pm0.2% ID/g), control sham group+ simvastatin (1.2±\pm0.3% ID/g) and control sham group (1.3±\pm0.2% ID/g). Significant Tc-99m-sestamibi activity in liver, kidney and lungs was also detected in the sepsis group treated with simvastatinin comparison to the other groups. CONCLUSIONS: Statin treatment altered the biodistribution of Tc-99m-sestamibi with increased cardiac and solid organ activity in rats with abdominal sepsis, while no impact on controls. Increased myocardial tracer activity may be a result of a possible protection effect due to increased tissue perfusion mediated by statins

    Expression of ABC Efflux Transporters in Placenta from Women with Insulin-Managed Diabetes

    Get PDF
    Drug efflux transporters in the placenta can significantly influence the materno-fetal transfer of a diverse array of drugs and other xenobiotics. To determine if clinically important drug efflux transporter expression is altered in pregnancies complicated by gestational diabetes mellitus (GDM-I) or type 1 diabetes mellitus (T1DM-I), we compared the expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and the breast cancer resistance protein (BCRP) via western blotting and quantitative real-time polymerase chain reaction in samples obtained from insulin-managed diabetic pregnancies to healthy term-matched controls. At the level of mRNA, we found significantly increased expression of MDR1 in the GDM-I group compared to both the T1DM-I (p<0.01) and control groups (p<0.05). Significant changes in the placental protein expression of MDR1, MRP2, and BCRP were not detected (p>0.05). Interestingly, there was a significant, positive correlation observed between plasma hemoglobin A1c levels (a retrospective marker of glycemic control) and both BCRP protein expression (r = 0.45, p<0.05) and BCRP mRNA expression (r = 0.58, p<0.01) in the insulin-managed DM groups. Collectively, the data suggest that the expression of placental efflux transporters is not altered in pregnancies complicated by diabetes when hyperglycemia is managed; however, given the relationship between BCRP expression and plasma hemoglobin A1c levels it is plausible that their expression could change in poorly managed diabetes

    Research Directions in the Clinical Implementation of Pharmacogenomics: An Overview of US Programs and Projects

    Get PDF
    Response to a drug often differs widely among individual patients. This variability is frequently observed not only with respect to effective responses but also with adverse drug reactions. Matching patients to the drugs that are most likely to be effective and least likely to cause harm is the goal of effective therapeutics. Pharmacogenomics (PGx) holds the promise of precision medicine through elucidating the genetic determinants responsible for pharmacological outcomes and using them to guide drug selection and dosing. Here we survey the US landscape of research programs in PGx implementation, review current advances and clinical applications of PGx, summarize the obstacles that have hindered PGx implementation, and identify the critical knowledge gaps and possible studies needed to help to address them

    REGULATION OF DRUG TRANSPORTERS: DURING INFECTION AND INFLAMMATION

    No full text

    Placental ABC efflux transporter expression in pregnancies complicated by insulin-managed diabetes.

    No full text
    <p><b>A</b>, MDR1 (ABCB1). <b>B</b>, MRP2 (ABCC2). <b>C</b>, BCRP (ABCG2). Boxes represent quartiles enclosing 50% of the data and the whiskers at either end extend to the 25<sup>th</sup> and 75<sup>th</sup> quartiles. The median is marked by a line, the mean is marked by an “+” and outliers are marked by a “•” outside the 25<sup>th</sup> and 75<sup>th</sup> quartiles. The “Combined” group presents data from all patients (n = 33) and was not included in statistical analyses. <b>D</b>, Spearman correlation analysis of the relationship between HbA1c levels (%) and BCRP protein expression in diabetic pregnancies (p<0.05).</p
    corecore