324 research outputs found

    Thermal conductivity from power and centre temperature of an arc

    Full text link

    One-year changes in brain microstructure differentiate preclinical Huntington's disease stages.

    Get PDF
    OBJECTIVE: To determine whether brain imaging markers of tissue microstructure can detect the effect of disease progression across the preclinical stages of Huntington's disease. METHODS: Longitudinal microstructural changes in diffusion imaging metrics (mean diffusivity and fractional anisotropy) were investigated in participants with presymptomatic Huntington's disease (N = 35) stratified into three preclinical subgroups according to their estimated time until onset of symptoms, compared with age- and gender-matched healthy controls (N = 19) over a 1y period. RESULTS: Significant differences were found over the four groups in change of mean diffusivity in the posterior basal ganglia and the splenium of the corpus callosum. This overall effect was driven by significant differences between the group far-from-onset (FAR) of symptoms and the groups midway- (MID) and near-the-onset (NEAR) of symptoms. In particular, an initial decrease of mean diffusivity in the FAR group was followed by a subsequent increase in groups closer to onset of symptoms. The seemingly counter-intuitive decrease of mean diffusivity in the group furthest from onset of symptoms might be an early indicator of neuroinflammatory process preceding the neurodegenerative phase. In contrast, the only clinical measure that was able to capture a difference in 1y changes between the preclinical stages was the UHDRS confidence in motor score. CONCLUSIONS: With sensitivity to longitudinal changes in brain microstructure within and between preclinical stages, and potential differential response to distinct pathophysiological mechanisms, diffusion imaging is a promising state marker for monitoring treatment response and identifying the optimal therapeutic window of opportunity in preclinical Huntington's disease

    IL-27 Imparts Immunoregulatory Function to Human NK Cell Subsets

    Get PDF
    Interleukin-27 (IL-27) is a cytokine with multiple roles in regulating the immune response, but its effect on human CD56bright and CD56dim NK cell subsets is unknown. NK cell subsets interact with other components of the immune system, leading to cytotoxicity or immunoregulation depending on stimulating factors. We found that IL-27 treatment results in increased IL-10 and IFN-γ expression, increased viability and decreased proliferation in both CD56bright and CD56dim NK cell subsets. More importantly, IL-27 treatment imparts regulatory activity to CD56bright NK cells, which mediates its suppressive function on T cells in a contact-dependent manner. There is growing evidence that CD56bright NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. Thus, understanding the role of IL-27 in NK cell function has important implications for treatment of autoimmune disorders

    Site‐specific weed management—constraints and opportunities for the weed research community: Insights from a workshop

    Get PDF
    The adoption of site‐specific weed management (SSWM) technologies by farmers is not aligned with the scientific achievements in this field. While scientists have demonstrated significant success in real‐time weed identification, phenotyping and accurate weed mapping by using various sensors and platforms, the integration by farmers of SSWM and weed phenotyping tools into weed management protocols is limited. This gap was therefore a central topic of discussion at the most recent workshop of the SSWM Working Group arranged by the European Weed Research Society (EWRS). This insight paper aims to summarise the presentations and discussions of some of the workshop panels and to highlight different aspects of weed identification and spray application that were thought to hinder SSWM adoption. It also aims to share views and thoughts regarding steps that can be taken to facilitate future implementation of SSWM

    C17 Prevents Inflammatory Arthritis and Associated Joint Destruction in Mice

    Get PDF
    C17 was first described about ten years ago as a gene expressed in CD34+ cells. A more recent study has suggested a role for C17 in chondrogenesis and development of cartilage. However, based on sequence analysis, we believe that C17 has homology to IL-2 and hence we present the hypothesis that C17 is a cytokine possessing immune-regulatory properties. We provide evidence that C17 is a secreted protein preferentially expressed in chondrocytes, hence in cartilage-rich tissues. Systemic expression of C17 in vivo reduces disease in a collagen antibody-induced arthritis model in mice (CAIA). Joint protection is evident by delayed disease onset, minimal edema, bone protection and absence of diverse histological features of disease. Expression of genes typically associated with acute joint inflammation and erosion of cartilage or bone is blunted in the presence of C17. Consistent with the observed reduction in bone erosion, we demonstrate reduced levels of RANKL in the paws and sera of mice over-expressing C17. Administration of C17 at the peak of disease, however, had no effect on disease progression, indicating that C17's immune-regulatory activity must be most prominent prior to or at the onset of severe joint inflammation. Based on this data we propose C17 as a cytokine that s contributes to immune homeostasis systemically or in a tissue-specific manner in the joint

    IL-27 Regulates IL-18 Binding Protein in Skin Resident Cells

    Get PDF
    IL-18 is an important mediator involved in chronic inflammatory conditions such as cutaneous lupus erythematosus, psoriasis and chronic eczema. An imbalance between IL-18 and its endogenous antagonist IL-18 binding protein (BP) may account for increased IL-18 activity. IL-27 is a cytokine with dual function displaying pro- and anti-inflammatory properties. Here we provide evidence for a yet not described anti-inflammatory mode of action on skin resident cells. Human keratinocytes and surprisingly also fibroblasts (which do not produce any IL-18) show a robust, dose-dependent and highly inducible mRNA expression and secretion of IL-18BP upon IL-27 stimulation. Other IL-12 family members failed to induce IL-18BP. The production of IL-18BP peaked between 48–72 h after stimulation and was sustained for up to 96 h. Investigation of the signalling pathway showed that IL-27 activates STAT1 in human keratinocytes and that a proximal GAS site at the IL-18BP promoter is of importance for the functional activity of IL-27. The data are in support of a significant anti-inflammatory effect of IL-27 on skin resident cells. An important novel property of IL-27 in skin pathobiology may be to counter-regulate IL-18 activities by acting on keratinocytes and importantly also on dermal fibroblasts
    corecore