501 research outputs found

    Data-efficient Online Classification with Siamese Networks and Active Learning

    Full text link
    An ever increasing volume of data is nowadays becoming available in a streaming manner in many application areas, such as, in critical infrastructure systems, finance and banking, security and crime and web analytics. To meet this new demand, predictive models need to be built online where learning occurs on-the-fly. Online learning poses important challenges that affect the deployment of online classification systems to real-life problems. In this paper we investigate learning from limited labelled, nonstationary and imbalanced data in online classification. We propose a learning method that synergistically combines siamese neural networks and active learning. The proposed method uses a multi-sliding window approach to store data, and maintains separate and balanced queues for each class. Our study shows that the proposed method is robust to data nonstationarity and imbalance, and significantly outperforms baselines and state-of-the-art algorithms in terms of both learning speed and performance. Importantly, it is effective even when only 1% of the labels of the arriving instances are available.Comment: 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 202

    Natriuretic peptide receptor-3 underpins the disparate regulation of endothelial and vascular smooth muscle cell proliferation by C-type natriuretic peptide

    Get PDF
    CM Panayiotou was the recipient of a Wellcome Trust Prize PhD studentship. RS Khambata was the recipient of a Medical Research Council PhD studentshi

    Unsupervised Incremental Learning with Dual Concept Drift Detection for Identifying Anomalous Sequences

    Full text link
    In the contemporary digital landscape, the continuous generation of extensive streaming data across diverse domains has become pervasive. Yet, a significant portion of this data remains unlabeled, posing a challenge in identifying infrequent events such as anomalies. This challenge is further amplified in non-stationary environments, where the performance of models can degrade over time due to concept drift. To address these challenges, this paper introduces a new method referred to as VAE4AS (Variational Autoencoder for Anomalous Sequences). VAE4AS integrates incremental learning with dual drift detection mechanisms, employing both a statistical test and a distance-based test. The anomaly detection is facilitated by a Variational Autoencoder. To gauge the effectiveness of VAE4AS, a comprehensive experimental study is conducted using real-world and synthetic datasets characterized by anomalous rates below 10\% and recurrent drift. The results show that the proposed method surpasses both robust baselines and state-of-the-art techniques, providing compelling evidence for their efficacy in effectively addressing some of the challenges associated with anomalous sequence detection in non-stationary streaming data.Comment: submitted to IJCNN2024,under revie

    Dynamically Personalizing Search Results for Mobile Users

    Get PDF
    International audienceWe introduce a novel situation-aware approach to personalize search results for mobile users. By providing a mobile user with appropriate information that dynamically satisfies his interests according to his situation, we tackle the problem of information overload. To build situation-aware user profile we rely on evidence issued from retrieval situations. A retrieval situation refers to the spatio-temporal context of the user when submitting a query to the search engine. A situation is represented as a combination of geographical and temporal concepts inferred from concrete time and location information by some ontological knowledge. User's interests are inferred from past search activities related to the identified situations. They are represented using concepts issued from a thematic ontology. We also involve a method to maintain the user's interests over his ongoing search activity and to personalize the search results

    Cooperative Simultaneous Tracking and Jamming for Disabling a Rogue Drone

    Full text link
    This work investigates the problem of simultaneous tracking and jamming of a rogue drone in 3D space with a team of cooperative unmanned aerial vehicles (UAVs). We propose a decentralized estimation, decision and control framework in which a team of UAVs cooperate in order to a) optimally choose their mobility control actions that result in accurate target tracking and b) select the desired transmit power levels which cause uninterrupted radio jamming and thus ultimately disrupt the operation of the rogue drone. The proposed decision and control framework allows the UAVs to reconfigure themselves in 3D space such that the cooperative simultaneous tracking and jamming (CSTJ) objective is achieved; while at the same time ensures that the unwanted inter-UAV jamming interference caused during CSTJ is kept below a specified critical threshold. Finally, we formulate this problem under challenging conditions i.e., uncertain dynamics, noisy measurements and false alarms. Extensive simulation experiments illustrate the performance of the proposed approach.Comment: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Distributed Diagnosis of Actuator and Sensor Faults in HVAC Systems

    Get PDF
    This paper presents a model-based methodology for diagnosing actuator and sensor faults affecting the temperature dynamics of a multi-zone heating, ventilating and air-conditioning (HVAC) system. By considering the temperature dynamics of the HVAC system as a network of interconnected subsystems, a distributed fault diagnosis architecture is proposed. For every subsystem, we design a monitoring agent that combines local and transmitted information from its neighboring agents in order to provide a decision on the type, number and location of the faults. The diagnosis process of each agent is realized in three steps. Firstly, the agent performs fault detection using a distributed nonlinear estimator. After the detection, the local fault identification is activated to infer the type of the fault using two distributed adaptive estimation schemes and a combinatorial decision logic. In order to distinguish between multiple local faults and propagated sensor faults, a distributed fault isolation is applied using the decisions of the neighboring agents. Simulation results of a 5-zone HVAC system are used to illustrate the effectiveness of the proposed methodology

    Integrated Ray-Tracing and Coverage Planning Control using Reinforcement Learning

    Full text link
    In this work we propose a coverage planning control approach which allows a mobile agent, equipped with a controllable sensor (i.e., a camera) with limited sensing domain (i.e., finite sensing range and angle of view), to cover the surface area of an object of interest. The proposed approach integrates ray-tracing into the coverage planning process, thus allowing the agent to identify which parts of the scene are visible at any point in time. The problem of integrated ray-tracing and coverage planning control is first formulated as a constrained optimal control problem (OCP), which aims at determining the agent's optimal control inputs over a finite planning horizon, that minimize the coverage time. Efficiently solving the resulting OCP is however very challenging due to non-convex and non-linear visibility constraints. To overcome this limitation, the problem is converted into a Markov decision process (MDP) which is then solved using reinforcement learning. In particular, we show that a controller which follows an optimal control law can be learned using off-policy temporal-difference control (i.e., Q-learning). Extensive numerical experiments demonstrate the effectiveness of the proposed approach for various configurations of the agent and the object of interest.Comment: 2022 IEEE 61st Conference on Decision and Control (CDC), 06-09 December 2022, Cancun, Mexic

    Distributed Search Planning in 3-D Environments With a Dynamically Varying Number of Agents

    Full text link
    In this work, a novel distributed search-planning framework is proposed, where a dynamically varying team of autonomous agents cooperate in order to search multiple objects of interest in three-dimension (3-D). It is assumed that the agents can enter and exit the mission space at any point in time, and as a result the number of agents that actively participate in the mission varies over time. The proposed distributed search-planning framework takes into account the agent dynamical and sensing model, and the dynamically varying number of agents, and utilizes model predictive control (MPC) to generate cooperative search trajectories over a finite rolling planning horizon. This enables the agents to adapt their decisions on-line while considering the plans of their peers, maximizing their search planning performance, and reducing the duplication of work.Comment: IEEE Transactions on Systems, Man, and Cybernetics: Systems, 202

    Long-term quality of life postacute kidney injury in cardiac surgery patients.

    Get PDF
    Acute renal failure after cardiac surgery is known to be associated with significant short-term morbidity and mortality. There have as yet been no major reports on long-term quality of life (QOL). This study assessed the impact of acute kidney injury (AKI) and renal replacement therapy (RRT) on long-term survival and QOL after cardiac surgery. The need for long-term RRT is also assessed
    • …
    corecore