815 research outputs found

    NECROMASS PRODUCTION: STUDIES IN UNDISTURBED AND LOGGED AMAZON FORESTS

    Get PDF
    Necromass stocks account for up to 20% of carbon stored in tropical forests and have been estimated to be 14–19% of the annual aboveground carbon flux. Both stocks and fluxes of necromass are infrequently measured. In this study, we directly measured the production of fallen coarse necromass (≥2 cm diameter) during 4.5 years using repeated surveys in undisturbed forest areas and in forests subjected to reduced‐impact logging at the Tapajos National Forest, Belterra, Brazil (3.08° S, 54.94° W). We also measured fallen coarse necromass and standing dead stocks at two times during our study. The mean (SE) annual flux into the fallen coarse necromass pool in undisturbed forest of 6.7 (0.8) Mg·ha−1·yr−1 was not significantly different from the flux under a reduced‐impact logging of 8.5 (1.3) Mg·ha−1·yr−1. With the assumption of steady state, the instantaneous decomposition constants for fallen necromass in undisturbed forests were 0.12 yr−1 for large, 0.33 yr−1 for medium, and 0.47 yr−1 for small size classes. The mass weighted decomposition constant was 0.15 yr−1 for all fallen coarse necromass. Standing dead wood had a residence time of 4.2 years, and ∼0.9 Mg·ha−1·yr−1 of this pool was respired annually to the atmosphere through decomposition. Coarse necromass decomposition at our study site accounted for 12% of total carbon re‐mineralization, and total aboveground coarse necromass was 14% of the aboveground biomass. Use of mortality rates to calculate production of coarse necromass leads to an underestimation of coarse necromass production by 45%, suggesting that nonlethal disturbance such as branch fall contributes significantly to this flux. Coarse necromass production is an important component of the tropical forest carbon cycle that has been neglected in most previous studies or erroneously estimated

    What if Artificial Intelligence Wrote This? Artificial Intelligence and Copyright Law

    Get PDF
    The increasing sophistication and proliferation of artificial intelligence has given rise to a provoking question in copyright law: Who is the copyright owner of a work created by autonomous artificial intelligence? In other words, when a machine learns, thinks, and acts without human input, and it creates a work, what person should own the copyright, if any? This Note explains why this is a pressing question and why current laws and practices fail to address the issue. It then analyzes the arguments for and against the possible choices: the artificial intelligence, the user, the programmer, the company that owns the artificial intelligence, and entrance into the public domain. Finally, this Note arrives at the conclusion that the work’s immediate entrance into the public domain is the solution

    Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem

    Get PDF
    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists

    Modeling raccoon (Procyon lotor) habitat connectivity to identify potential corridors for rabies spread

    Get PDF
    The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services National Rabies Management Program has conducted cooperative oral rabies vaccination (ORV) programs since 1997. Understanding the eco-epidemiology of raccoon (Procyon lotor) variant rabies (raccoon rabies) is critical to successful management. Pine (Pinus spp.)-dominated landscapes generally support low relative raccoon densities that may inhibit rabies spread. However, confounding landscape features, such as wetlands and human development, represent potentially elevated risk corridors for rabies spread, possibly imperiling enhanced rabies surveillance and ORV planning. Raccoon habitat suitability in pine-dominated landscapes in Massachusetts, Florida, and Alabama was modeled by the maximum entropy (Maxent) procedure using raccoon presence, and landscape and environmental data. Replicated (n = 100/state) bootstrapped Maxent models based on raccoon sampling locations from 2012–2014 indicated that soil type was the most influential variable in Alabama (permutation importance PI = 38.3), which, based on its relation to landcover type and resource distribution and abundance, was unsurprising. Precipitation (PI = 46.9) and temperature (PI = 52.1) were the most important variables in Massachusetts and Florida, but these possibly spurious results require further investigation. The Alabama Maxent probability surface map was ingested into Circuitscape for conductance visualizations of potential areas of habitat connectivity. Incorporating these and future results into raccoon rabies containment and elimination strategies could result in significant cost-savings for rabies management here and elsewhere

    T-20 and T-1249 HIV fusion inhibitors’ structure and conformational behavior in solution: a molecular dynamics study

    Get PDF
    Fusion of the HIV envelope with the target cell membrane is a critical step of HIV entry into the target cell. Several peptides based on the C-region of HIV gp41 have been used in clinical trials as possible HIV fusion inhibitors. Among these are T-1249 and T-20 (also known as enfurvitide; see fig. 1). Despite recent works, a detailed molecular picture of the inhibitory mechanism of these molecules is still lacking. These peptides are usually depicted as α-helices by analogy with the structure of the sequence of the gp41 protein with which they are homologous. However, structures like these would not explain the ability that the two fusion inhibitors have to both become solvated by water and interact effectively with cell membranes. This led us to study the structure and conformational behavior of all these peptides. To this effect, extensive molecular dynamics simulations (total time 400 ns) with explicit solvent (SPC water) were carried out to investigate the structure and conformational behavior of T-1249 and T-20, as well as shorter homologous peptides CTP and 3f5 (see fig. 1), which show no inhibitory action. The monitored parameters include mean square displacement relative to the initial conformation (α-helix structures in all cases), secondary structure, solvent accessible surface and radius of gyration. We found that the studied peptides have no stable structure in solution in the time scale studied. Additionally, the solvent accessible area varies significantly during the simulation. Our findings suggest that these peptides may assume not only one but several possible sets of structures in solution, some of which more adequate to interact with the solvent, whereas others might be better suited to interact with cell membranes

    Ancient Amazonian populations left lasting impacts on forest structure

    Get PDF
    Amazonia contains a vast expanse of contiguous tropical forest and is influential in global carbon and hydrological cycles. Whether ancient Amazonia was highly disturbed or modestly impacted, and how ancient disturbances have shaped current forest ecosystem processes, is still under debate. Amazonian Dark Earths (ADEs), which are anthropic soil types with enriched nutrient levels, are one of the primary lines of evidence for ancient human presence and landscape modifications in settings that mostly lack stone structures and which are today covered by vegetation. We assessed the potential of using moderate spatial resolution optical satellite imagery to predict ADEs across the Amazon Basin. Maximum entropy modeling was used to develop a predictive model using locations of ADEs across the basin and satellite‐derived remotely sensed indices. Amazonian Dark Earth sites were predicted to be primarily along the main rivers and in eastern Amazonia. Amazonian Dark Earth sites, when compared with randomly selected forested sites located within 50 km of ADE sites, were less green canopies (lower normalized difference vegetation index) and had lower canopy water content. This difference was accentuated in two drought years, 2005 and 2010. This is contrary to our expectation that ADE sites would have nutrient‐rich soils that support trees with greener canopies and forests on ADE soils being more resilient to drought. Biomass and tree height were lower on ADE sites in comparison with randomly selected adjacent sites. Our results suggested that ADE‐related ancient human impact on the forest is measurable across the entirety of the 6 million km2 of Amazon Basin using remotely sensed data

    CARBON BALANCE AND VEGETATION DYNAMICS IN AN OLD‐GROWTH AMAZONIAN FOREST

    Get PDF
    Amazon forests could be globally significant sinks or sources for atmospheric carbon dioxide, but carbon balance of these forests remains poorly quantified. We surveyed 19.75 ha along four 1‐km transects of well‐drained old‐growth upland forest in the Tapajós National Forest near Santarém, Pará, Brazil (2°51′ S, 54°58′ W) in order to assess carbon pool sizes, fluxes, and climatic controls on carbon balance. In 1999 there were, on average, 470 live trees per hectare with diameter at breast height (dbh) ≥10 cm. The mean (and 95% ci) aboveground live biomass was 143.7 ± 5.4 Mg C/ha, with an additional 48.0 ± 5.2 Mg C/ha of coarse woody debris (CWD). The increase of live wood biomass after two years was 1.40 ± 0.62 Mg C·ha−1·yr−1, the net result of growth (3.18 ± 0.20 Mg C·ha−1·yr−1 from mean bole increment of 0.36 cm/yr), recruitment of new trees (0.63 ± 0.09 Mg C·ha−1·yr−1, reflecting a notably high stem recruitment rate of 4.8 ± 0.9%), and mortality (−2.41 ± 0.53 Mg C·ha−1·yr−1 from stem death of 1.7% yr−1). The gain in live wood biomass was exceeded by respiration losses from CWD, resulting in an overall estimated net loss from total aboveground biomass of 1.9 ± 1.0 Mg C·ha−1·yr−1. The presence of large CWD pools, high recruitment rate, and net accumulation of small‐tree biomass, suggest that a period of high mortality preceded the initiation of this study, possibly triggered by the strong El Niño Southern Oscillation events of the 1990s. Transfer of carbon between live and dead biomass pools appears to have led to substantial increases in the pool of CWD, causing the observed net carbon release. The data show that biometric studies of tropical forests neglecting CWD are unlikely to accurately determine carbon balance. Furthermore, the hypothesized sequestration flux from CO2 fertilization (\u3c0.5 Mg C·ha−1·yr−1) would be comparatively small and masked for considerable periods by climate‐driven shifts in forest structure and associated carbon balance in tropical forests

    Molecular Dynamics Simulation of HIV Fusion Inhibitor T-1249: Insights on Peptide-Lipid Interaction

    Get PDF
    T-1249 is a peptide that inhibits the fusion of HIV envelope with the target cell membrane. Recent results indicate that T-1249, as in the case of related inhibitor peptide T-20 (enfuvirtide), interacts with membranes, more extensively in the bilayer liquid disordered phase than in the liquid ordered state, which could be linked to its effectiveness. Extensive molecular dynamics simulations (100 ns) were carried out to investigate the interaction between T-1249 and bilayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and POPC/cholesterol (1 : 1). It was observed that T-1249 interacts to different extents with both membrane systems and that peptide interaction with the bilayer surface has a local effect on membrane structure. Formation of hydrogen bonding between certain peptide residues and several acceptor and donor groups in the bilayer molecules was observed. T-1249 showed higher extent of interaction with bilayers when compared to T-20. This is most notable in POPC/Chol membranes, owing to more peptide residues acting as H bond donors and acceptors between the peptide and the bilayer lipids, including H-bonds formed with cholesterol. This behavior is at variance with that of T-20, which forms no H bonds with cholesterol. This higher ability to interact with membranes is probably correlated with its higher inhibitory efficiency

    Avaliação de propriedades estruturais de membranas lipídicas após substituição do colesterol por análogos fluorescentes

    Get PDF
    A espectroscopia e a microscopia de fluorescência têm sido usadas em biofísica de membranas há décadas. Como a unidade estrutural básica das membranas biológicas é a bicamada de lípidos e estes não fluorescem, o uso de sondas extrínsecas de membrana é uma necessidade. Contudo, duas questões preocupantes se levantam quanto ao uso de sondas extrínsecas de fluorescência em estudos de membranas. Em primeiro lugar, o comportamento das moléculas de sonda na bicamada (que região da bicamada elas reportam, as suas dinâmicas translacional e rotacional) é frequentemente mal conhecido. Em segundo lugar, na interpretação de resultados de experiências de fluorescência, pode ser difícil distinguir entre propriedades legítimas da membrana e efeitos de perturbação resultantes da incorporação da sonda. Para este efeito, as simulações por dinâmica molecular (MD), ao providenciarem informação detalhada à escala atómica, representam um meio valioso para caracterizar a localização e dinâmica de sondas na bicamada, assim como a magnitude de perturbação que elas induzem na estrutura lipídica [1]. Neste contexto, optimizaram-se, com recurso ao programa Firefly, as estruturas do colesterol e de dois análogos fluorescentes (desidroergoesterol e colestatrienol) ao nível de teoria DFT/R-B3LYP/6-31G(d) e submeteram-se em seguida ao servidor de topologias ATB, inscrevendo simultaneamente as cargas parciais calculadas na topologia molecular. Estas topologias foram utilizadas na construção de modelos de membranas lipídicas constituídas por POPC, colesterol e uma das sondas fluorescentes acima identificadas. Os modelos assim obtidos foram hidratados e sujeitos a simulações de MD, donde se calculou a área por lípido, a espessura e densidade da bicamada, os coeficientes de difusão lateral para as espécies presentes e os parâmetros de ordem das cadeias acilo. As simulações foram efectuadas em ensemble NPT através do pacote de software GROMACS. Análises preliminares permitiram a comparação dos comportamentos na bicamada dos esteróis fluorescentes com o do colesterol, informação vital para validar o uso dos primeiros como análogos fluorescentes do segundo. REFERÊNCIAS [1] Loura, L.M.S.; Prates Ramalho, J.P. Biophys. Rev. 1 (2009), 141
    corecore