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RESEARCH ARTICLE
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Abstract
Landscape modification and habitat fragmentation disrupt the connectivity of natural land-

scapes, with major consequences for biodiversity. Species that require patchily distributed

habitats, such as those that specialize on early successional ecosystems, must disperse

through a landscape matrix with unsuitable habitat types. We evaluated landscape effects

on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transi-
tionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene

flow and connectivity corridors for a population of cottontails in the northeastern United

States. Wemodeled dispersal in relation to landscape structure and composition and tested

hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and

natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly

development and forest, impeded gene flow. The relative influence of matrix habitats differed

between study areas in relation to a fragmentation gradient. Barrier features had higher

explanatory power in the more fragmented site, while facilitating features were important in

the less fragmented site. Landscape models that included a simultaneous barrier and facili-

tating effect of roads had higher explanatory power than models that considered either effect

separately, supporting the hypothesis that roads act as both barriers and facilitators at all

spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our

facilitator models. Corridor analyses using circuit and least cost path approaches revealed

the importance of anthropogenic, linear features for restoring connectivity between the study

areas. In fragmented landscapes, human-modified habitats may enhance functional connec-

tivity by providing suitable dispersal conduits for early successional specialists.
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Introduction
Landscape connectivity is vital for species persistence, as it facilitates the movement of individu-
als and their genes and facilitates ecological processes and resources through the landscape [1].
Landscape modification and habitat fragmentation disrupt the structural connectivity of natural
landscapes, with major consequences for biodiversity [2,3]. Connectivity issues are germane to
species living in naturally patchy and ephemeral habitats [4,5]. The spatial configuration of
patchily distributed habitat poses connectivity challenges, and species dependent on these habi-
tat types are likely to respond to landscape features differently than generalist species [6,7].

Landscapes consisting of early successional (shrubland) habitats are ideal for investigating
fragmentation effects on animal dispersal. These ephemeral habitats are patchy by nature and
occur in a heterogeneous landscape matrix comprised of a diversity of habitats, many of which
are inhospitable to early successional specialists. Due to a loss of natural disturbance regimes,
land use change, and anthropogenic landscape modifications, early successional habitats are on
the decline in eastern North America [8–11]. Species reliant on these declining habitats face
consequences of habitat loss and fragmentation, including population isolation and decline
[12–15]. As such, early successional ecosystems are among the most endangered, and their
conservation is a high priority in North America [11] and elsewhere [16].

In these fragmented early successional systems, where shrubland habitat is limited, func-
tional connectivity may be maintained by anthropogenic habitats that provide suitable dis-
persal conduits. For example, areas in which periodic human activity such as mowing or
cutting occurs may hinder forest succession and provide consistent early successional habitat.
These human-modified habitats often occur in narrow, linear strips, such as along roadsides or
utility lines, and may provide movement corridors for shrubland species [4,17,18], much like
riparian corridors can provide dispersal pathways for aquatic or forest specialist species [19–
20]. Roads and other linear landscape features, typically thought to be barriers to animal move-
ment [21–22], may therefore facilitate movement in some species or act as both dispersal barri-
ers and facilitators within a single species [2].

The matrix surrounding early successional habitat patches may also contain natural habitat
types or landscape features that, while not optimal for species’ occupancy, may enhance con-
nectivity by providing stepping-stone patches for dispersal. Such features may include wet-
lands with herbaceous cover, grasslands, agricultural lands, and old fields. Whether these less
densely vegetated habitat types provide suitable cover to facilitate connectivity of early succes-
sional habitat specialists remains unknown and likely varies with the degree of the organism’s
habitat specialization.

To address issues of connectivity in early successional ecosystems, we investigated landscape
effects on dispersal of an obligate species of high conservation concern, the New England cotton-
tail (Sylvilagus transitionalis). Along with many other shrubland specialists, the New England cot-
tontail has experienced recent population declines, mirroring range-wide losses in habitat [23]. It
is a species of greatest conservation need in every state in which it occurs, listed as endangered in
the states of Maine and NewHampshire [24,25], and was a candidate for federal listing under the
Endangered Species Act until a recent decision determined that current conservation efforts were
sufficient to forego listing [26]. These conservation efforts rely on extensive habitat creation and
restoration. Yet the empirically based knowledge of cottontail dispersal necessary to guide the
design of restoration landscapes is minimal. To this end, our primary goals were to develop test-
able hypotheses about the functional connectivity of an early successional obligate and to generate
knowledge to guide restoration activities for this threatened species and ecosystem.

We evaluated the landscape matrix features, including both anthropogenic and natural hab-
itats, in relation to New England cottontail dispersal and in the context of landscape
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heterogeneity and fragmentation. We used a landscape genetics approach to model observed
gene flow (effective dispersal) in relation to landscape structure. Based on previous research as
well as expert opinion, we hypothesized that major roads, development, water, open fields, and
mature forests would act as barriers to dispersal, while wetlands, scrub-shrub landcover, and
linear, anthropogenic, shrubby habitat features such as powerlines, railroad crossings, and
roadsides, would facilitate dispersal (Table 1). To evaluate the dual influence of roads as both
barriers and facilitators, we developed a model that simultaneously accounted for these oppos-
ing effects on dispersal. We also included a model with LiDAR-detected habitat and predicted
that it would improve facilitator model fits. We evaluated landscape heterogeneity and frag-
mentation effects by comparing two metapopulations occupying landscapes with different
compositions and configurations. We hypothesized that barrier landscape features would pre-
dict gene flow in the more fragmented landscape and facilitating features would be more influ-
ential in the less fragmented landscape. Lastly, we used the results of our landscape genetics
analyses to identify potential movement corridors and key areas for restoration within and
between the two study areas. Specifically, we were interested in the potential for anthropogenic
habitats to enhance functional connectivity via human-modified, linear, dispersal corridors.

Methods

Study system
The New England cottontail, an early-successional-habitat obligate, is a model organism for
studying connectivity in heterogeneous landscapes and investigating fragmentation effects on
dispersal. Once widespread throughout the New England states and eastern New York, New
England cottontails today are found in five geographically isolated and genetically distinct pop-
ulations located in southern Maine and southeastern New Hampshire, central New Hampshire,
eastern Massachusetts on Cape Cod, eastern Connecticut and Rhode Island, and western Con-
necticut and New York [23,27]. Remnant populations of New England cottontails today
occupy less than 14% of their historical range and less than 10% of the remaining habitats

Table 1. Landscape influences on cottontail gene flow. Landscape features evaluated in this study along with their hypothesized and empirically identi-
fied (from univariate least cost path models) influence on New England cottontail gene flow. Plus signs indicate postive relationship, minus signs indicate neg-
ative relationship.

Landscape Variable Hypothesized Relationship to Gene Flow Identified Relationship to Gene Flow

Roads1 - -

Development - -

Fields -/+ -

Forest - -

Water - -

Scrub/Shrub + +

Forested Wetlands + -

Scrub/Shrub Wetlands + +

Estuarine Emergent Wetlands + -

Palustrine Emergent Wetlands + +

Linear Facilitators2 + +

LiDAR-detected habitat3 + +

1Road crossings
2Powerlines, railroad corridors and roadsides
3LiDAR-detected habitat data were only available for Cape Elizabeth

doi:10.1371/journal.pone.0148842.t001
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within this range [23]. These remaining habitats are small and discontinuous and exist as dis-
crete patches within gradients of fragmentation resulting from ongoing anthropogenic land-
scape modifications. Within this landscape, New England cottontails function as
metapopulations, with their persistence dependent on connections among networks of suitable
habitat patches [28].

In this study, we focus on a geographically isolated group of cottontails at the northern
extent of the species range in southern Maine and New Hampshire. This study area has been
the subject of recent occupancy [29] and population genetics [30] research. Cottontails in this
region have experienced range contraction and population bottlenecks, and they have reduced
genetic diversity relative to other cottontail populations [27,30]. They occur in a landscape in
which remaining habitat patches are small (2–35 ha, mean = 5 ha) and fragmented by develop-
ment and inhospitable habitat. In previous research, major highways and large waterbodies
were found to impede dispersal and isolate metapopulations, while the shrubby habitat along
roadsides, railroad beds, and utility corridors to facilitate cottontail dispersal within popula-
tions [30]. The importance of these linear dispersal barriers and facilitators relative to the other
features of the landscape matrix, however, is unknown, as are the principal factors that influ-
ence gene flow in this system. Here we investigate the full suite of landscape features (Table 1)
in relation to gene flow in a fragmentation gradient.

Within this landscape, cottontails occupy remnant patches primarily in two geographically
distinct areas, with no current gene flow between them, although historically there were occupied
intervening patches [23,30]. A northern metapopulation in Cape Elizabeth, southeast of the city
of Portland, Maine, consists of a network of relatively close habitat patches, within a spatial
extent of 8 by 13 km. It is comprised of a heterogeneous matrix of landcover types dominated by
forest and suburban development but has no major highways or other high traffic volume roads.
The second occupied area (hereafter "Kittery") is 40 km south, encompassing the towns of Kit-
tery, York, and the Berwicks in Maine and Dover, New Hampshire, with a spatial extent of 18 by
23 km in a predominantly rural/agricultural landscape. Interstate 95 (I-95) and the Piscataqua/
Salmon Falls River further subdivide this area. Cottontail densities are lower in Kittery, and habi-
tat patches are, on average, smaller and more widely dispersed than those in Cape Elizabeth.
Scrub-shrub, the preferred cottontail habitat, comprises 3.9–4.6% of each landscape, while domi-
nant landcover features differ, with more development and wetlands in Cape Elizabeth and more
forest and roads in Kittery (Table 2). Another small, isolated group of cottontails occurs on a few
patches inWells, Maine, located roughly halfway between the two populations (Fig 1).

Ethics Statement
No vertebrate subjects were used in this research, as all genetic samples were obtained from
fecal pellets that were noninvasively collected in the wild. All samples were collected with
appropriate permits: the United Sates Fish andWildlife Service authorized permission for col-
lections on federal lands, Maine Division of Fisheries and Wildlife and New Hampshire Fish
and Game authorized permission for collections on state lands, and landowners gave permis-
sion for collections on private lands. The focal organism of this study, the New England cotton-
tail is a state endangered species in New Hampshire and Maine and was a candidate for federal
listing under the Endangered Species Act at the time of this study. The United States Fish and
Wildlife Service recently made the decision not to list the species.

Data Availability
Microsatellite genotype and sample location data are available in the DRYAD data repository
(http://dx.doi.org/10.5061/dryad.1s834). Pair-wise individual genetic distance data (Rousset’s a
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and Dps) are provided in S1 Appendix. Results of supporting data analyses (e.g., univariate
resistance modeling optimization, Mantel’s tests results) are provided in S1–S4 Tables.

Sampling and genetic data
For this study, we used a previously published dataset, consisting of genotypes at 11 microsatel-
lite loci of 137 individuals sampled from unique georeferenced locations during intensive, sys-
tematic, fecal pellet surveys of occupied patches in 2007–2009 (see [30] for details of sampling
and genotyping and Fig 1 for sampling locations). For identifying and comparing landscape
influences on gene flow, we focused separately on the two primary geographic areas (Cape Eliz-
abeth, n = 84, and Kittery, n = 48 –excluding the 5 individuals in Wells). To identify potential
movement corridors for restoring connectivity among populations, we used all individuals
(n = 137 total). To estimate gene flow among cottontails, we used two individual pairwise
genetic distance metrics—Rousset's a [31] and Dps [32], which we calculated for all pairs of
cottontails within each geographic area, separately. Rousset's a was calculated in Spagedi v1.4
[33] and Dps was calculated in Microsatellite Analyzer (MSA 4.05; [34]; pair-wise a and Dps
values are in S1 Appendix). Euclidean distances between all pairs of sampling locations were
calculated in R [35]. All subsequent analyses were conducted with the individual cottontail
sampling location and individual cottontail genotype as the units of analyses.

Overview of Landscape Genetics Approach
To evaluate landscape influences on gene flow, we used a resistance surface approach with a
cost surface parameterized by the genetic data to model the movement of individuals between
locations [7,36]. To model resistance to movement within each of the two study areas, we used
least cost path distances [37] as our ecological distances between locations. Least cost paths
assume that animals move in single paths that minimize resistance through the landscape. We
followed a 2-step process, whereby we first developed univariate models, with binary resistance
surfaces, for the influence of each hypothesized landscape feature on gene flow. We optimized
resistance surfaces empirically, following [38], with a constrained optimization approach to
identify the optimal resistance value for each landscape feature on gene flow; this optimization

Table 2. Study area composition and configuration. Characteristics of occupied patches and proportion of each study area comprised by specific land-
cover types. Road and LiDAR percentages indicate the overall proportion of landscape that they cover and their coverage overlaps with that of other land-
cover types.

Landcover Kittery Cape Elizabeth Full study area

Development 11.2% 28.6% 14.7%

Fields 11.1% 8.9% 12.0%

Forest 58.8% 33.9% 54.3%

Scrub/Shrub 4.6% 3.9% 4.7%

Forested Wetlands 7.4% 9.3% 8.0%

Scrub/Shrub Wetlands 1.5% 1.1% 1.5%

Palustrine Emergent Wetlands 1.0% 2.1% 1.1%

Estuarine Emergent Wetlands 1.0% 9.2% 1.7%

Water 3.3% 3.1% 2.1%

Roads 25.3% 14.3% 24.9%

Patch Characteristics

Patch Size (ha) 3.10 5.40 - - -

Perimeter:Area Ratio (edge) 557 414 - - -

Nearest Neighbor Distance (km) 1.45 0.33 - - -

doi:10.1371/journal.pone.0148842.t002

Dispersal of an Early Successional Obligate

PLOS ONE | DOI:10.1371/journal.pone.0148842 March 8, 2016 5 / 21



Fig 1. Study area in Maine/New Hampshire (USA). Top left two insets provide context for study area location in North America within the states of Maine
and New Hampshire. Bottom left panel shows the full extent of the study area. I-95 is shown by solid black line partitioning east and west sides of the Kittery
region. The Piscataqua River is visible in the southern portion of Kittery. Close ups of the two study study areas with landcover are shown in the top right for
Cape Elizabeth and bottom right for Kittery. Locations of sampled New England cottontail individuals are shown by black points. Landcover key:
gray = development, green = forest, orange = fields, yellow = scrub/shrub, dark blue = open water, and light blue = wetlands.

doi:10.1371/journal.pone.0148842.g001
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was done for each of the two study areas separately, using the same array of resistance values
(see below). We then developed a set of a priorimultivariate models, using resistance surfaces
built from the univariate optimization results, to compare combinations of features represent-
ing anthropogenic and natural barriers and facilitators. To evaluate these models, we used lin-
ear mixed effects models and an information-theoretic approach for model selection. Lastly, to
identify connectivity corridors for focusing restoration, we used the resistance surface from the
best-supported multivariate landscape model and applied it across the entire study area with
corridor analyses using both a least cost path and a circuit theory approach.

Landscape Resistance Surfaces
We developed resistance surfaces for ten landscape variables selected for their hypothesized
ability to impede or facilitate dispersal (Table 1). In addition, roadsides, powerline rights of
way, and railroads, which are comprised of shrubby habitat, were mapped individually as well
as considered together as linear facilitating features. Landcover variables were derived from the
NOAA C-CAP 2006 landcover map and mapped at 30 m resolution. Wetland types were iden-
tified from the National Wetland Inventory. Roads, powerlines, and railroads were selected
from a 1986 transmission shapefile (USGS 1989), which contained standardized road informa-
tion between Maine and New Hampshire. We modified the layer to reflect current road struc-
ture and traffic-volume-based classification using current Maine state road data (Maine
Department of Transportation, 2011). We considered separately the influence of 6 road classes,
distinguished by traffic volume, with road class 1 corresponding to multi-lane highways and
road class 6 corresponding to unpaved and unmaintained roads and trails. All roads were con-
sidered to be 30-m wide to match the 30 m resolution of the landcover layer, and class 1 roads
were buffered to 60 m to reflect their true size relative to minor roads.

We also evaluated the role of habitats identified by LiDAR imagery. LiDAR is capable of
identifying vegetation structure at a higher resolution than Landsat imagery [39], and its capac-
ity for detecting vegetation less than ten meters in height is ideal for identifying the vegetation
used by cottontails. LiDAR point cloud data (ground points identified by vendor) were acquired
from FEMA (Federal Emergency Management Agency) and were available for the Cape Eliza-
beth study area only. Raw data was processed using the program Fusion v. 2.70 [40] to develop a
canopy model and ground filter model to generate a surface model. Subtracting the ground sur-
face from the canopy model resulted in 1-meter grids of vegetation at 1–3 meter height. GIS lay-
ers (ArcGIS 9.3) were generated and post processed using a nearest neighbor approach.

Univariate Resistance Modeling
Each landscape variable was first tested as a separate, univariate resistance surface to identify
how each landscape feature influenced cottontail gene flow (i.e., whether as a barrier or facilita-
tor) and to generate optimal resistance values for use in subsequent multivariate modeling. For
each study area, landscape variables were mapped separately in a binary friction grid and
assigned elevated or reduced resistance costs relative to the background [41] based on their
hypothesized effect on cottontail movement. Forest, open water, development, and roads were
tested as barrier landcover types, using resistance values of 2, 5, 10, 25, 50, 100, 250, 500, 750,
and 1000 against a background surface value of 1. Scrub/shrub habitat, linear features (roadside
edges, powerlines and railroads), and LiDAR-detected habitats were tested as facilitating land-
cover features, with a resistance value of 1 against a background value of 100. Fields and wet-
lands were tested as both barriers and facilitators. Least cost path analyses for each univariate
model were run in ArcMap (v10; Environmental Science Research Institute, Redlands, USA)
using the landscape genetics toolbox (v1.2.3; [42]).

Dispersal of an Early Successional Obligate
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To optimize univariate resistance surfaces, we used Mantel and partial Mantel tests (com-
pensating for the effects of geographic distance) to calculate correlations between effective dis-
tance (cumulative cost distance from least cost paths; [37]) and individual pairwise genetic
distance (Rousset's a and Dps) in the ecodist R package [43]. For each landscape variable, we
identified the unimodal peak of support in partial Mantel r values or the value at which the cor-
relations began to plateau [38]; this represented the best fitting resistance value to the genetic
data. While the efficacy of Mantel tests has been questioned for aspects of landscape genetics
analyses, such as assessing model fit [44–46], they are powerful and appropriate for comparing
distance matrices [47] and accurately identify drivers of genetic differentiation [48,49]. Further,
they continue to be widely used, are easily interpretable, and provide a straight-forward
approach for parameterizing resistance surfaces [50,51]. For these reasons, and recognizing
that there is currently no consensus on the best analytical methods in landscape genetics, we
used the partial Mantel tests to optimize our univariate resistance surfaces, but we did not use
them to assess model fit or the relative importance of variables. For the latter purposes, we con-
ducted linear mixed effects modeling on the cost distance outputs with individual pair-wise
genetic distance as the dependent variable, using the lmer function in the lme4 R package [52],
following [53]. We conducted model selection with AIC using the AICcmodavg R package
[54], to compare the relative importance of individual variables. We also included a null model
of geographic distance effects on genetic distance (isolation by distance; IBD).

Multivariate Resistance Modeling
We developed a set of multivariate models to identify which combinations of landscape vari-
ables were most influential in New England cottontail gene flow. Rather than considering all
combinations of binary variables, we built select multivariate models that included the most
biologically relevant variable combinations. The goal of these models was to test the relative
importance of barriers and facilitators as well as natural and anthropogenic features within
each of the two landscapes. One of the variables of greatest a priori interest in our study was
roads, and results of our binary models confirmed previous findings of [30] that roads function
as both barriers and facilitators of gene flow. For this reason, we developed an approach for
evaluating the simultaneous barrier and facilitating influences of roads. We assigned the pixels
comprising the width of the roads the optimal barrier resistance costs from the univariate mod-
els, and then we buffered the roads by 30 m to include a single pixel width buffer with a cost
value of 1 on each side, thereby modeling the effect of a road as a perpendicular barrier with
roadside right-of-ways as parallel facilitators. To distinguish whether all road classes had this
dual influence on dispersal or just the largest roads, we ran the full multivariate model with
only road classes likely to include maintained right-of-ways buffered with facilitators and then
again with all roads buffered with facilitators.

For each model, multivariate resistance surfaces were developed using the optimized resis-
tances from the univariate models. The relative support for each resistance surface was evalu-
ated using mixed effects models and AIC, as above. We applied mixed effect models to the least
cost path distance outputs of our multivariate models (following [55]) rather than building the
mixed effect models using individual landscape features.

Corridor identification
Landscape features that structure metapopulations at the local scale may differ from those at
the population level [56,57]. To evaluate these scale-dependent patterns, as well as to identify
movement corridors that may have connected the two populations in the recent past and pro-
vide targets for future restoration, we tested multivariate landscape models across the full study
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area. As optimal resistance values differed for certain landscape features between the Cape Eliz-
abeth and Kittery populations, we evaluated a few different models to identify the best fitting
resistance values across this larger spatial extent. Specifically, we evaluated full models with all
landscape features using population-specific optimal resistance values, as well as the average
and maximum resistance values between the two study areas for each feature. Models included
roads buffered with facilitators. As multi-lane highways and unmaintained roads were not
present in the Cape Elizabeth landscape, for those road classes we only tested resistance values
that were optimized for Kittery. We ran least cost path analysis for each set of resistance values
and, as before, evaluated the relationship of effective cost distances and individual genetic dis-
tances using partial Mantel tests. We then used the set of resistance values that optimized the
partial Mantel correlation to run the same suite of multivariate models that we ran for the two
populations separately. We evaluated these competing multivariate models using mixed effect
models and AIC as before. We used the least cost path outcome of the best fitting mixed effect
model to identify corridors linking the Cape Elizabeth and Kittery populations.

As least cost path analyses are limited to identifying a single best movement pathway, for
corridor analysis we also used a circuit-theoretic approach that enables identifying multiple
paths simultaneously [58]. We implemented circuit analysis in Circuitscape v4.0 [59] across
the entire study area to identify all potential movement corridors and important connectivity
areas. For this analysis, we used the top multivariate resistance model identified from the full
population least cost path analysis. Circuit models can be run across nodes (individual sam-
pling locations) or focal patches (collections of cells that are considered together as a single
node; [60]). We ran analyses between all individual sampling locations (137 nodes) as well as
between focal patches that represented the core area of each metapopulation (3 nodes, 1 each
in Cape Elizabeth, Wells, and Kittery). Models were run in the "all-to-one" mode, which is ideal
for identifying important connectivity areas while minimizing run-time and memory usage
[60]. Areas of high movement probability identified by circuit analysis were compared to the
corridor pathways resulting from the least cost path analysis.

Results

Univariate Resistance Modeling
Tests using Rousset's a and Dps provided similar correlations; results from only Rousset's a are
reported here. Overall, optimized barrier resistance values ranged from 2–250 and were highest
for forested wetlands, followed by development and roads (S1 Table). As expected, optimal
resistance values for landscape features varied between the Cape Elizabeth and Kittery regions,
however, all landscape features were found to consistently exert either barrier or facilitating
effects in the two regions. In contrast to our predictions, not all wetlands had the same effect
on gene flow: scrub-shrub and palustrine emergent wetlands exhibited a positive effect on gene
flow, while forested and estuarine wetlands exhibited a negative effect. Fields were also found
to have a negative effect on gene flow. All other landscape features were found to have the pre-
dicted effect on gene flow (Table 1).

All features were significantly correlated with gene flow, even when controlling for distance,
and all but the linear facilitator model in Kittery had higher Mantel r correlations than geo-
graphic distance alone (S2 Table). Development, roads, forest, and forested wetlands had
higher resistance values in Cape Elizabeth, while water, estuarine emergent wetlands, and fields
had higher resistance values in Kittery. Major roads (classes 1–3) had higher resistance values
than minor roads (classes 4–6). Some roadsides were also positively correlated with gene flow
when they were considered as univariate facilitators. In Kittery, including road classes 1–3 as
facilitators along with powerlines and railroads produced the highest partial Mantel r
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correlation, and in Cape Elizabeth, class 3 roadsides were also significant as linear facilitators
(there were no road classes 1,2 and 6 in Cape Elizabeth). Within the Cape Elizabeth landscape,
LiDAR-identified habitat was significantly correlated with gene flow (r = 0.1398, p-
value = 0.0004). Mixed effect models identified buffered roads as the top predictor of gene flow
in Kittery (simultaneous barrier and facilitator effect) and scrub/shrub wetlands as the top pre-
dictor of gene flow in Cape Elizabeth (facilitating effect; Table 3).

Multivariate Resistance Modeling
Including LiDAR-classified short stature vegetation as a facilitating landcover type in Cape
Elizabeth models increased both Mantel and partial Mantel correlations (S3 Table). Models
that included roads buffered with facilitators—to account for the simultaneous barrier and
facilitator effects—always outperformed analogous models that only considered roads as barri-
ers. These full models with buffered roads had the highest Mantel correlation when only road
classes 1–3 were buffered as facilitators in Kittery, and with all road classes buffered in Cape
Elizabeth (only 3,4,5 road classes present). Mixed effects models identified the all-barriers
model as the best predictor of gene flow in Kittery, with 94% AIC model weight, and the model
with both anthropogenic and natural facilitators was the most explanatory in Cape Elizabeth,
with 98% AIC model weight (Table 4).

Corridor identification
The Cape Elizabeth optimized resistance values were the best fit across the full population
(highest partial Mantel r; S4 Table); this model included road classes 1–3 buffered with facili-
tating resistance values. These resistance values were used to evaluate the multivariate models
for the full population prior to running corridor analyses. The full landscape model was the
most explanatory mixed effect model across the entire population with clear model support
(99% AIC weight; Table 4). Using the full landscape model, least cost path analysis identified a
number of movement pathways within each population but only a limited number of routes
connecting the two study areas (Fig 2). Similarly, current flow from circuit analyses was high
within each population, although the individuals in Wells were isolated from Kittery by regions
of lower current flow. Results of circuit analyses were nearly identical when considering indi-
viduals and focal areas; results from the focal area analysis are presented here. Between popula-
tions, least cost path identified minimal movement pathways and current flow from circuit
analyses was relatively low outside of and between the occupied areas. In the southern portion
of the study area, least cost path routes followed the railroad between western Kittery and
Wells and the side of I-95 to the east, passing through regions of little or no current flow from
circuit analysis. These two least cost path corridors converged to a single corridor north of
Wells, following the roadside along I-95. In contrast, circuit analysis identified the coastal
region as the most likely dispersal route between Kittery andWells and highlighted a corridor
from Kittery to Cape Elizabeth following a powerline right-of-way west of I-95.

Discussion

Functional Connectivity of Early Successional Obligates
Functional connectivity depends on the configuration and composition of the landscape [61].
Landscapes typically consist of a diversity of landcover types with varying degrees of perme-
ability to animal movement [62]. Habitat types most suitable to movement are surrounded by
a matrix of variably permeable landscape features. For specialists reliant on patchily distributed
habitats, the composition and configuration of this matrix plays an important role in shaping
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dispersal patterns. Here we show that considering the full suite of matrix habitats is critical for
understanding the dispersal of an early-successional-habitat specialist, the New England cot-
tontail, for which suitable habitat patches account for less than 5% of the landscape.

Although it has been suggested that habitat suitability is a poor predictor of permeability to
movement [7], the connectivity of New England cottontails appears to be driven by their pre-
ferred early successional habitat (scrub/shrub wetlands, scrub/shrub) as well as by anthropo-
genic features that include shrubby components (roadsides, powerlines, railroads). These latter
habitat types likely provide sufficient cover and forage potential to act as stepping stone patches
or dispersal conduits between occupied habitat patches. The distribution of these natural and
human-modified shrubby habitats is critical for functional connectivity of cottontails, as the

Table 3. Univariate landscapemodel results. Model selection results for univariate linear mixed effects models of the relationship of landscape features
on individual genetic distance, measured by Rousset’s a, for New England cottontails in the Kittery and Cape Elizabeth study areas. AICc is the second order
or sample size corrected Akaike information criterion, delta AICc is the difference in AICc of each competing model relative to the best model, and AICcWt is
the probability that the model is the best fit.

Model AICc Δ AICc AICcWt

Kittery

buffered_roads1 55.82 0.00 1.00

water 84.77 28.94 0.00

emergent_wetlands 103.72 47.89 0.00

estuarine_wetlands 107.16 51.34 0.00

fields 108.24 52.42 0.00

roads_barrier 109.75 53.92 0.00

development 109.80 53.97 0.00

forested_wetlands 111.36 55.54 0.00

shrub_wetlands 115.50 59.68 0.00

scrub_shrub 120.33 64.50 0.00

forest 122.20 66.37 0.00

roads_facilitator 133.99 78.16 0.00

null 389.11 333.29 0.00

Cape Elizabeth

shrub_wetlands -2098.25 0.00 1.00

development -2073.28 24.98 0.00

roads_facilitator -2068.01 30.24 0.00

scrub_shrub -2067.66 30.59 0.00

fields -2066.04 32.21 0.00

forest -2066.02 32.23 0.00

estuarine_wetlands -2063.96 34.29 0.00

water -2063.89 34.37 0.00

emergent_wetlands -2063.10 35.15 0.00

roads_barrier -2058.33 39.92 0.00

lidar2 -2054.31 43.94 0.00

forested_wetlands -2039.07 59.18 0.00

buffered_roads1 -2032.03 66.22 0.00

null -2002.73 95.53 0.00

1 roads modeled as simultaneous barrier and facilitator with road width as barrier and 30 m strip buffered on either
2 1–3 m tall vegetation detected by lidar imagery; data only available for Cape Elizabeth study area

doi:10.1371/journal.pone.0148842.t003
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remaining landscape matrix features—including fields, forests, open water, and anthropogenic
development—impede movement.

Development, fields, forest, and forested and estuarine wetlands account for approximately
90% of the coastal Maine and New Hampshire landscape. These landcover types are unsuitable
for New England cottontail dispersal and other shrubland habitat specialists (e.g., [63–65]),
likely due to their lack of dense vegetative cover. While LiDAR detected some shrub habitat
within forest and forested wetland landcover pixels, the majority of forested areas in this study

Table 4. Multivariate landscapemodel results. Model selection results for multivariate linear mixed effects models of the relationship of landscape fea-
tures on individual genetic distance, measured by Rousset’s a, for New England cottontails in the Kittery and Cape Elizabeth study areas. AICc is the second
order or sample size corrected Akaike information criterion, delta AICc is the difference in AICc of each competing model relative to the best model, and
AICcWt is the probability that the model is the best fit.

AICc Delta_AICc AICcWt

Kittery

all_barriers1 87.92 0.00 0.94

landcover 93.66 5.74 0.05

global2 98.40 10.48 0.00

development + roads_barrier 111.26 23.34 0.00

natural_barriers3 120.07 32.16 0.00

natural_facilitators4 149.10 61.18 0.00

all_facilitators5 181.71 93.80 0.00

null 389.11 301.19 0.00

linear (anthropogenic) facilitators6 399.04 305.19 0.00

Cape Elizabeth

all_facilitators -2086.67 0.00 0.98

natural_facilitators -2077.94 8.73 0.01

development + roads_barrier -2076.58 10.08 0.01

landcover -2071.76 14.91 0.00

global -2066.67 20.00 0.00

linear (anthropogenic) facilitators -2061.89 27.21 0.00

all_barriers -2042.95 43.72 0.00

natural_barriers -2041.78 44.89 0.00

null -2002.73 83.94 0.00

Full Population

global -4034.82 0.00 1.00

all_barriers -4018.70 16.12 0.00

natural_barriers -4017.58 17.24 0.00

development + roads_barrier -4015.69 21.45 0.00

natural_facilitators -4012.56 22.27 0.00

landcover -4010.79 24.03 0.00

all_facilitators -3946.95 87.88 0.00

linear (anthropogenic) facilitators -3662.09 118.48 0.00

null -3537.85 496.97 0.00

1Forest, Forested Wetlands, Estuarine Wetlands, Water, Fields, Development, and Roads as barriers
2 all features
3 Forested Wetlands, Estuarine Wetlands, Water, Fields
4 Palustrine Emergent Wetlands, Scrub/Shrub Wetlands, Scrub/Shrub, and LiDAR
5 Palustrine Emergent Wetlands, Scrub/Shrub Wetlands, and Scrub/Shrub, Linear Facilitators (powerlines, railroads, roadsides), and LiDAR
6 Linear Facilitators: Railroads, powerlines, and roadsides

doi:10.1371/journal.pone.0148842.t004
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Fig 2. Connectivity corridors for cottontails.Circuit analysis overlayed with least cost analysis (black lines) of New England cottontail gene flow across
the Maine-New Hampshire study area. Areas in red indicate high current flow/high probability of movement while green/blue areas indicate low probability of
movement.

doi:10.1371/journal.pone.0148842.g002
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lack a dense understory required by early successional obligates. Areas of human development
also lack suitable habitat and are typically correlated with roads, which also impede dispersal.
Our results suggest that fields, which are used by many early successional species, including the
congeneric eastern cottontails (Sylvilagus floridanus), are too open to provide functional dis-
persal pathways for New England cottontails. Early successional specialists with more general-
ist dispersal patterns [4,5] may be able to utilize fields as dispersal routes, while early
successional obligates, such as the New England cottontail, may not.

Roads as Both Barriers and Facilitators
Our results highlight the dual influence of roads as both barriers and facilitators of gene flow.
Simultaneous positive-negative relationships with roads have been demonstrated in other stud-
ies, where connectivity is negatively influenced by road crossings but positively associated with
movement parallel to roadways [66,67]. The barrier effects of roads are well established for a
diversity of taxa, with varying life history strategies and habitat requirements [21,22]; the facili-
tating effects of roads are likely restricted to species that can take advantage of this habitat
[17,68,69]. Recent landscape genetics investigations provide support for the hypothesis that the
shrubby vegetation along roadsides has a positive influence on dispersal for some species
[4,66]. By including roads as both facilitators and barriers within the same models, our findings
support earlier work on the roadside hypothesis for New England cottontail [30,70]. Our
approach, which gave high resistance to the pixels that comprised the roads and low resistance
to a linear buffer alongside of the roads, improved the performance of multivariate models in
predicting New England cottontail gene flow. The dual road influence was consistent across
the local and population scales, suggesting that roads play an important and complex role in
connectivity at both scales.

Our findings for the barrier effect of roads were consistent with a large body of research
showing that high-traffic-volume roads pose barriers to gene flow for a diversity of organisms
(reviewed in [22,68]) and have a greater influence on gene flow than secondary and unpaved
roads [71,72]. In Kittery, I-95 and other major (classes 1–3) roads were found to have a greater
resistance to movement than minor (classes 4–6) roads. In Cape Elizabeth, where no major
highways occur, roads were not as influential in explaining cottontail gene flow when viewed as
barriers, but were strongly influential as facilitators.

Lidar—detected Habitats
We found that LiDAR imagery can be used to improve connectivity models [6] and identify dis-
persal corridors for early successional obligate species. Early successional habitats are difficult to
characterize, especially when a shrubby understory occurs below a taller canopy structure.
These habitats therefore may not be accurately represented by landcover data. To this end,
LiDAR data, which describe plant canopy and subcanopy topographies [39], have proven useful
in characterizing horizontal and vertical stand structure, including understory and ground
cover [73]. LiDAR data have previously been shown to have value in ecological studies [74] and
they have been used to improve habitat suitability models for managing wildlife species, includ-
ing those with very specific vegetation requirements [75,76]. To our knowledge, this is among
the first times LiDAR has been directly applied to connectivity analyses [77]. We used LiDAR to
enhance our ability to identify early successional habitat and incorporated these LiDAR-
detected habitats into our dispersal models. The LiDAR-identified scrub/shrub patches were a
positive predictor of gene flow, despite covering only 1% of the landscape. The inclusion of
LiDAR-identified habitat as a facilitator variable in multivariate models improved the correla-
tion between effective and genetic distances over models that relied on Landsat-identified,
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scrub-shrub habitat alone. Our novel application of LiDAR demonstrates its utility in identify-
ing dispersal habitat that may be difficult to identify using traditional landcover data, thereby
aiding connectivity modeling, particularly for species reliant on distinctive vegetation structures.

Comparison Across Landscapes
Identifying the consistencies and differences of genetic responses to landscape features as well
as the factors that underpin dispersal patterns across a species' range can provide important
insight for conservation management [78]. By replicating our study across two landscapes with
different degrees of fragmentation, we were able to make inferences about features that consis-
tently influence cottontail gene flow as well as how the influences on cottontail dispersal vary
in relation to landscape context. While the two study areas had a similarly low proportion
(<5%) of preferred early successional (scrub-shrub) habitat, they differed with respect to the
matrix composition, including, amount of agriculture, levels of development, road density,
average patch size, and cottontail densities. Based on these characteristics, we considered the
Cape Elizabeth landscape less fragmented than the Kittery landscape. In comparing the results
from these two landscapes, we find support for our hypothesis that gene flow of cottontails in
the more fragmented Kittery landscape are more influenced by barrier features than by facili-
tating features, with the opposite pattern holding true for cottontails in the less fragmented
Cape Elizabeth landscape.

Specifically, we found that forested wetlands, forest, and roads were influential barrier fea-
tures in both landscapes, as well as across the entire study area as a whole–i.e., they had consis-
tently elevated resistance values, relatively high Mantel correlations, and highest ranked mixed
effect model fits. These features are therefore consistently influential for the species across a
gradient of fragmentation. We also found that development, water, and fields had variable
influences, depending on their degree of presence in the landscape: development was influen-
tial in the Cape Elizabeth landscape while water and fields were more influential in the Kittery
landscape where they were more abundant (fields) or larger (Piscataqua River). Buffered roads
and open water were the barrier models with the strongest explanatory power on gene flow in
Kittery, consistent with earlier work in this system showing that roads and the Pisquataqua
River subdivide genetically distinct groupings of cottontails in this region [30]. Models with
natural facilitating features—scrub-shrub wetlands and scrub shrub—were more influential in
Cape Elizabeth than Kittery. These features had relatively high support in both univariate and
multivariate models—scrub-shrub wetlands was the top univariate model, while natural and all
facilitators were the two highest ranked multivariate models. Comparatively, both univariate
and multivariate facilitator models performed poorly (very low AIC model support) in Kittery,
while models with barrier features had a stronger explanatory effect on gene flow. Interestingly,
both natural (fields, forest, water, barrier wetlands) and anthropogenic (roads) barriers were
important, likely given their prevalence in the Kittery landscape.

In addition to landscape context, considering spatial scale is also essential when making
inferences from landscape genetics studies, as movement within the maximum dispersal dis-
tance of a species may vary dramatically from gene flow patterns across the entire population
[56,57,79]. We considered local (within maximum dispersal distance—Kittery and Cape Eliza-
beth study areas) and regional (between populations) spatial scales. Our analyses revealed that
several features, including roads, forest, and forested wetlands, act as strong barriers to New
England cottontail gene flow at both the local and regional scales. Linear landscape features
were consistently important as facilitators at both scales, although they were more influential at
the regional scale where they provided critical corridors. Local analyses, however, identified
differentially important landscape features within the two study areas; these important local
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influences would not have been identified by analyses at the regional scale. Accordingly, con-
sidering results from just one of the two local study areas would have provided an incomplete
picture of landscape influences on cottontail gene flow. Extending implications of our findings
across the species’ range, we suggest there are some consistent range-wide influences on gene
flow with variation in locally important features, underscoring the need for habitat manage-
ment priorities to be matched to the local landscape.

Connectivity Corridors—Implications for Restoration
Corridors can provide critical linkages between habitat patches and wildlife populations [2]
and can be identified by least cost path [80–82] or circuit [83,84] analysis. Comparative studies
indicate that corridors identified by these two methods rarely overlap [85–87]. To identify
potential corridors between the geographically isolated study sites of Kittery and Cape Eliza-
beth, we used both least cost path and circuit analyses across the entire study area and com-
pared the results of the two approaches. We found that least cost path and circuit analyses
identified similar connectivity patterns within each local study area, but differed substantially
when considering long-distance dispersal pathways. Although the two methods identified dif-
ferent corridors between Kittery and Cape Elizabeth, they both identified pathways that fol-
lowed linear strips of early successional habitat, including railroads, powerline rights-of-way,
and roadsides, suggesting that these linear, anthropogenic habitats may function as important
dispersal conduits for early successional specialists

Our results support previous conclusions about the relative strengths of least cost path and
circuit analyses. Least cost path analysis identifies the single least costly path between a set of
points [37], whereas circuit analysis considers all possible movement pathways, thereby
accounting for flexibility in the movement behavior of multiple, individual animals and provid-
ing greater utility in planning management strategies and identifying locations for habitat res-
toration [83]. Consistent with expectations for landscapes with limited amounts of patchily
distributed habitat [88], the high proportion of the landscape that is unsuitable for cottontail
dispersal resulted in very few options for movement pathways. This pathway constraint was
reflected more strongly in least cost path analyses, for which pathways converged to one or two
options, while circuit analysis identified areas of high current flow outside of these least cost
path routes. The powerline corridor identified by circuit analysis is a more biologically realistic
pathway for long-distance cottontail dispersal than the interstate highway corridor identified
by least cost path analysis. While both types of linear features enhance dispersal, the mortality
risk associated with the interstate roadsides and the scarcity of stepping stone habitats in its
vicinity makes it less desirable as a target for restoration activities than the powerline corridor.
New England cottontails occupied habitat patches along this powerline corridor in the recent
past [23,30], underscoring the importance of this area for focusing habitat restoration efforts to
improve population connectivity in the future. To this end, circuit analyses also identified a
large area of high current flow at the northern edge of this powerline, suggesting a clear strategy
for focusing restoration.

Conclusions
It has been hypothesized that species that specialize on patchily distributed habitats require a
high ability to move through the landscape matrix to avoid the negative consequences of demo-
graphic isolation [89]. Accordingly, generalist dispersal patterns have been identified for sev-
eral habitat specialists occupying naturally fragmented habitats [4,5,89]. In contrast, the New
England cottontail, an early successional habitat obligate, is highly specialized on these sparse
and patchy habitats in both its patch occupancy and dispersal. These naturally ephemeral
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habitats today exist in an extremely heterogeneous landscape matrix, fragmented by anthropo-
genic landscape modification. The majority of the matrix elements have a barrier effect on cot-
tontail gene flow, particularly roads, development, forest, and forested wetlands, with the
relative influence of these features dependent on the landscape context and composition. Only
features comprised of natural or anthropogenic scrub-shrub habitats facilitate cottontail gene
flow and these features comprise only a small percentage of the cottontail’s landscape. As a
consequence, populations may become permanently isolated due to a scarcity of long-distance
dispersal routes. Linear, anthropogenic, shrubby habitats, including powerline right-of-ways
and roadsides, can serve as important corridors with potential for restoring connectivity. In
fragmented landscapes, where shrubland habitat is limited, human-modified habitats may
enhance functional connectivity by providing suitable dispersal conduits for early successional
specialists. Restoration strategies that consider the value of these human-modified habitats
may enhance conservation efforts to benefit a suite of vulnerable species dependent on endan-
gered early successional ecosystems.
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