151 research outputs found

    Historical and Projected Surface Temperature over India during the 20th and 21st century.

    Get PDF
    Surface Temperature (ST) over India has increased by ~0.055 K/decade during 1860-2005 and follows the global warming trend. Here, the natural and external forcings (e.g., natural and anthropogenic) responsible for ST variability are studied from Coupled Model Inter-comparison phase 5 (CMIP5) models during the 20th century and projections during the 21st century along with seasonal variability. Greenhouse Gases (GHG) and Land Use (LU) are the major factors that gave rise to warming during the 20th century. Anthropogenic Aerosols (AA) have slowed down the warming rate. The CMIP5 projection over India shows a sharp increase in ST under Representative Concentration Pathways (RCP) 8.5 where it reaches a maximum of 5 K by the end of the 21st century. Under RCP2.6 emission scenarios, ST increases up to the year 2050 and decreases afterwards. The seasonal variability of ST during the 21st century shows significant increase during summer. Analysis of rare heat and cold events for 2080-2099 relative to a base period of 1986-2006 under RCP8.5 scenarios reveals that both are likely to increase substantially. However, by controlling the regional AA and LU change in India, a reduction in further warming over India region might be achieved

    Evaluation of a Depth-Based Multivariate k

    Get PDF
    A nonparametric simulation model (k-nearest neighbor resampling, KNNR) for water quality analysis involving geographic information is suggested to overcome the drawbacks of parametric models. Geographic information is, however, not appropriately handled in the KNNR nonparametric model. In the current study, we introduce a novel statistical notion, called a “depth function,” in the classical KNNR model to appropriately manipulate geographic information in simulating stormwater quality. An application is presented for a case study of the total suspended solids throughout the entire United States. The stormwater total suspended solids concentration data indicated that the proposed model significantly improves the simulation performance compared with the existing KNNR model

    Synthèse de modèles régionaux d'estimation de crue utilisée en France et au Québec

    Get PDF
    De nombreuses méthodes régionales ont été développées pour améliorer l'estimation de la distribution des débits de crues en des sites où l'on dispose de peu d'information ou même d'aucune information. Cet article présente une synthèse de modèles hydrologiques utilisés en France et au Québec (Canada), à l'occasion d'un séminaire relatif aux " méthodes d'estimation régionale en hydrologie " tenu à Lyon en mai 1997. Les modèles français sont fortement liés à une technique d'extrapolation de la distribution des crues, la méthode du Gradex, qui repose sur l'exploitation probabiliste conjointe des séries hydrométriques et pluviométriques. Ceci explique les deux principaux volets d'études régionales pratiquées en France : les travaux liés à la régionalisation des pluies et ceux liés à la régionalisation des débits. Les modèles québecois comprennent généralement deux étapes : la définition et la détermination de régions hydrologiquement homogènes, puis l'estimation régionale, par le transfert à l'intérieur d'une même région de l'information des sites jaugés à un site non-jaugé ou partiellement jaugé pour lequel on ne dispose pas d'information suffisante. Après avoir donné un aperçu des méthodes pratiquées dans les deux pays, une discussion dégage les caractéristiques principales et les complémentarités des différentes approches et met en évidence l'intérêt de développer une collaboration plus étroite pour mieux tenir compte des particularités et des complémentarités des méthodes développées de part et d'autre. Une des pistes évoquées consiste à combiner l'information régionale pluviométrique (approche française) et hydrométrique (approche québécoise).Design flood estimates at ungauged sites or at gauged sites with short records can be obtained through regionalization techniques. Various methods have been employed in different parts of the world for the regional analysis of extreme hydrological events. These regionalization approaches make different assumptions and hypotheses concerning the hydrological phenomena being modeled, rely on various types of continuous and non-continuous data, and often fall under completely different theories. A research seminar dealing with " regional estimation methods in hydrology " took place in Lyon during the month of May 1997, and brought together various researchers and practitioners mainly from France and the Province of Quebec (Canada). The present paper is based on the conferences and discussions that took place during this seminar and aims to review, classify, comparatively evaluate, and potentially propose improvements to the most prominent regionalization techniques utilized in France and Quebec. The specific objectives of this paper are :· to review the main regional hydrologic models that have been proposed and commonly used during the last three decades ;· to classify the literature into different groups according to the origin of the method, its specific objective, and the technique it adopts ; · to present a comprehensive evaluation of the characteristics of the methods, and to point out the hypotheses, data requirements, strengths and weaknesses of each particular one ; and · to investigate and identify potential improvements to the reviewed methods, by combining and extending the various approaches and integrating their particular strengths.Regionalization approaches adopted in France include the Gradex method which represents a simplified rainfall-runoff model which provides estimates of flood magnitudes of given probabilities and is based on rainfall data which often cover longer periods and are more reliable than flow data (Guillot and Duband, 1967 ; CFGB, 1994). It is based on the hypotheses that beyond a given rainfall threshold (known as the pivot point), all water is transformed into runoff, and that a rainfall event of a given duration generates runoff for the same length of time. These hypotheses are equivalent to assuming that, beyond the pivot point, the rainfall-runoff relationship is linear and that the precipitation and runoff probability curves are parallel on a Gumbel plot.In Quebec (and generally in North America), regional flood frequency analysis involves usually two steps : delineation of homogeneous regions, and regional estimation. In the first step, the focus is on identifying and regrouping sites which seem sufficiently homogeneous or sufficiently similar to the target ungauged site to provide a basis for information transfer. The second step of the analysis consists in inferring flood information (such as quantiles) at the target site using data from the stations identified in the first step of the analysis. Two types of " homogeneous " regions can be proposed : fixed set regions (geographically contiguous or non-contiguous) and neighborhood type of regions. The second type includes the methods of canonical correlation analysis and of the regions of influence. Regional estimation can be accomplished using one of two main approaches : index flood or quantile regression methods.The results of this work indicate that the philosophies of regionalization and the methods utilized in France and Quebec are complementary to each other and are based on different needs and outlooks. While the approaches followed in France are characterized by strong conceptual and geographic aspects with an emphasis on the utilization of information related to other phenomena (such as precipitations), the approaches adopted in Quebec rely on the strength of their statistical and stochastic components and usually condense the spatial and temporal information to a realistic functional form. This dissimilarity in the approaches being followed on either side may be originated by the distinct topographic and climatic characteristics of each region (France and Quebec) and by the differences in basin sizes and hydrometeorologic network densities. The conclusions of the seminar point to the large potential of improvements in regional estimation methods, which may result from an enhanced exchange between scientists from both sides : indeed, there is much to gain from learning about the dissimilarities between the various approaches, comparing their performances, and devising new methods that combine their individual strengths. Hence, the Gradex method for example could benefit from an increased utilization of regional flood information, while flood regionalization methods utilized in Quebec could gain much from the formalization of the use of rainfall information and from the integration of an improved modeling of physical hydrologic phenomena. This should result in the enhancement of the efficiency of regional estimation methods and their ability to handle various practical conditions.It is hoped that this research will contribute towards closing the gap between French and Quebec literature, and more generally between the European and the North American hydrological schools of thought, by narrowing the large literature that is available, by providing the necessary cross-evaluation of regional flood analysis models, and by providing comprehensive propositions for improved approaches for regional hydrologic modeling

    La régionalisation des précipitations : une revue bibliographique des développements récents

    Get PDF
    L'estimation de l'intensité de précipitations extrêmes est un sujet de recherche en pleine expansion. Nous présentons ici une synthèse des travaux de recherche sur l'analyse régionale des précipitations. Les principales étapes de l'analyse régionale revues sont les méthodes d'établissement de régions homogènes, la sélection de fonctions de distributions régionales et l'ajustement des paramètres de ces fonctions.De nombreux travaux sur l'analyse régionale des précipitations s'inspirent de l'approche développée en régionalisation des crues. Les méthodes de types indice de crues ont été utilisées par plusieurs auteurs. Les régions homogènes établies peuvent être contiguës ou non-contiguës. L'analyse multivariée a été utilisée pour déterminer plusieurs régions homogènes au Canada. L'adéquation des sites à l'intérieur d'une région homogène a souvent été validée par une application des L-moments, bien que d'autres tests d'homogénéité aient aussi été utilisés.La loi générale des valeurs extrêmes (GEV) est celle qui a le plus souvent été utilisée dans l'analyse régionale des précipitations. D'autres travaux ont porté sur la loi des valeurs extrêmes à deux composantes (TCEV), de même que sur des applications des séries partielles.Peu de travaux ont porté sur les relations intensité durée dans un contexte régional, ni sur les variations saisonnières des paramètres régionaux. Finalement, les recherches ont débuté sur l'application des concepts d'invariance d'échelle et de loi d'échelle. Ces travaux sont jugés prometteurs.Research on the estimation of extreme precipitation events is currently expanding. This field of research is of great importance in hydraulic engineering not only for the design of dams and dikes, but also for municipal engineering designs. In many cases, local data are scarce. In this context, regionalization methods are very useful tools. This paper summarizes the most recent work on the regionalization of precipitation. Steps normally included in any regionalization work are the delineation of homogenous regions, selection a regional probability distribution function and fitting the parameters.Methods to determine homogenous regions are first reviewed. A great deal of work on precipitation was inspired by methods developed for regional flow analysis, especially the index flood approach. Homogenous regions can be contiguous, but in many cases they are not. The region of influence approach, commonly used in hydrological studies, has not been often applied to precipitation data. Homogenous regions can be established using multivariate statistical approaches such as Principal Component Analysis or Factorial Analysis. These approaches have been used in a number of regions in Canada. Sites within a homogenous region may be tested for their appropriateness by calculating local statistics such as the coefficient of variation, coefficient of skewness and kurtosis, and by comparing these statistics to the regional statistics. Another common approach is the use of L-moments. L-moments are linear combinations of ordered statistics and hence are not as sensitive to outliers as conventional moments. Other homogeneity tests have also been used. They include a Chi-squared test on all regional quantiles associated with a given non-exceedance probability, and a Smirnoff test used to validate the inclusion of a station in the homogenous region.Secondly, we review the distributions and fitting methods used in regionalization of precipitation. The most popular distribution function used is the General Extreme Value (GEV) distribution. This distribution has been recommended for precipitation frequency analysis in the United Kingdom. For regional analysis, the GEV is preferred to the Gumbel distribution, which is often used for site-specific frequency analysis of precipitation extremes. L-moments are also often used to calculate the parameters of the GEV distribution. Some applications of the Two-Component Extreme Value (TCEV) distribution also exist. The TCEV has mostly been used to alleviate the concerns over some of the theoretical and practical restrictions of the GEV.Applications of the Partial Duration Series or Peak-Over-Threshold (POT) approach are also described. In the POT approach, events with a magnitude exceeding a certain threshold are considered in the analysis. The occurrence of such exceedances is modelled as a Poisson process. One of the drawbacks of this method is that it is sometimes necessary to select a relatively high threshold in order to comply with the assumption that observations are independent and identically distributed (i.i.d.). The use of a re-parameterised Generalised Pareto distribution has also been suggested by some researchers.Research on depth-duration relations on a regional scale is also discussed. Empirical approaches used in Canada and elsewhere are described. In most cases, the method consists of establishing a non-linear relationship between a quantile associated with a given duration and its return period to a reference quantile, such as a 1-hour rainfall with a 10-year return period. Depth duration relationships cannot be applied uniformly across Canada for events with durations exceeding two hours. Seasonal variability studies in regionalization are relatively scarce, but are required because of the obvious seasonality of precipitation. In many cases, seasonal regimes may lead to different regionalization approaches for the wet and the dry season. Some research has focused on the use of periodic functions to model regional parameters. Another approach consists of converting the occurrence data of a given event in an angular measurement and developing seasonal indices based on this angular measurement.Other promising avenues of research include the scaling approach. The debate over the possibility of scale invariance for precipitation is ongoing. Simple scaling was studied on a number of precipitation data, but the fact that intermittence is common in precipitation regimes and the presence of numerous zero values in the series does not readily lead to proper application of this approach. Recent research has shown that multiple scaling is likely a more promising avenue

    Chemical composition, antimicrobial, antioxidant and anticancer activities of essential oil from Ammodaucus leucotrichus Cosson & Durieu (Apiaceae) growing in South Algeria

    Get PDF
    ABSTRACT. The chemical composition of the essential oil obtained by hydrodistillation from aerial parts of A. leucotrichus Cosson & Durieu (Apiaceae) grown in the south of Algeria (El-Oued) was determined by GC-MS analysis. The oil was found to be rich in perilladehyde 64.66% and D-Limonene 26.99%. The biological activity of A. leucotrichus Cosson & Durieu essential oil has been investigated. The in vitro antimicrobial activity of the essential oil sample was tested on eight strains, one yeast and one fungi. The test showed interesting antimicrobial properties, especially on Salmonella enterica and E. coli, the antioxidant capacity of the oil was measured using the cyclic voltammetry, and the AAT value of A. leucotrichus essential oil was evaluated 47.84 mg α-TE/L. In addition, the antitumor activity showed that the oil of A. leucotrichus was very significant against the HCT116 colon cancer cell line.               KEY WORDS: Ammodaucus leucotrichus, Antioxidant activity, Anticancer activity, Cyclic voltammetry Bull. Chem. Soc. Ethiop. 2019, 33(3), 541-549. DOI: https://dx.doi.org/10.4314/bcse.v33i3.1

    Usefulness of the Reversible Jump Markov Chain Monte Carlo Model in Regional Flood Frequency Analysis

    Full text link
    Regional flood frequency analysis is a convenient way to reduce estimation uncertainty when few data are available at the gauging site. In this work, a model that allows a non-null probability to a regional fixed shape parameter is presented. This methodology is integrated within a Bayesian framework and uses reversible jump techniques. The performance on stochastic data of this new estimator is compared to two other models: a conventional Bayesian analysis and the index flood approach. Results show that the proposed estimator is absolutely suited to regional estimation when only a few data are available at the target site. Moreover, unlike the index flood estimator, target site index flood error estimation seems to have less impact on Bayesian estimators. Some suggestions about configurations of the pooling groups are also presented to increase the performance of each estimator
    • …
    corecore