467 research outputs found

    VitisPathways: gene pathway analysis for V. vinifera

    Get PDF
    Pathway enrichment analysis of genetic and proteomic data is fraught with multiple testing and other interpretive issues. A web-based tool, VitisPathways, was developed to simplify the process of pathway analyses for Vitis researchers while maintaining statistical robustness. Because enrichment analysis tools outside of pathway analysis have shown non-regularity to multiple test corrections, simulations were used to assess the degree of regularity in Vitis knowledgebases and its impact on interpretation. This tool is freely available and can be an aide to hypothesis generation in transcriptomic studies of Vitis

    NamesforLife Semantic Resolution Services for the Life Sciences

    Get PDF
    A major challenge in bioinformatics, life sciences, and medicine is using correct and informative names. While this sounds simple enough, many different naming conventions exist in the life sciences and medicine that may be either complementary or competitive with other naming conventions. For a variety of reasons, proper names are not always used, leading to an accumulated semantic ambiguity that readers of the literature and end users of databases are left to resolve on their own. This ambiguity is a growing problem and the biocuration community is aware of its consequences. 

To assist those confronted with ambiguous names (which not only includes researchers but clinicians, manufacturers, patent attorneys, and others who use biological data in their routine work), we developed a generalizable semantic model that represents names, concepts, and exemplars (representations of biological entities) as distinct objects. By identifying each object with a Digital Object Identifier (DOI) it becomes possible to place forward-pointing links in the published literature, in databases, and vector graphics that can be used as part of a mechanism for resolving ambiguities, thereby “future proofing” a nomenclature or terminology. A full implementation of the N4L model for the _Bacteria_ and _Archaea_ was released in April, 2010. The system is professionally curated and represents a Tier III resource in Parkhill’s view of bioinformatic services. A variety of tools and web services have been developed for readers, publishers, and others (N4L Guide, N4L Autotagger, N4L Semantic Search, N4L Taxonomic Abstracts) and we are incorporating other taxonomies into the N4L data model, as well as adding additional phenotypic, genotypic, and genomic information to the existing exemplars to add greater value to end users

    Determining Environmental Flow Regime in the Pee Dee Watershed, SC

    Get PDF
    2010 South Carolina Water Resource Conference. Informing strategic water planning to address natural resource, community and economic challenges

    Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines

    Get PDF
    BackgroundPolymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies.MethodsWe aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence.ResultsWe found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis.ConclusionsAntigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines

    Sociodemographic, Anthropometric, and Psychosocial Predictors of Attrition across Behavioral Weight-Loss Trials.

    Get PDF
    Preventing attrition is a major concern in behavioral weight loss intervention studies. The purpose of this analysis was to identify baseline and six-month predictors associated with participant attrition across three independent clinical trials of behavioral weight loss interventions (PREFER, SELF, and SMART) that were conducted over 10 years. Baseline measures included body mass index, Barriers to Healthy Eating, Beck Depression Inventory-II (BDI), Hunger Satiety Scale (HSS), Binge Eating Scale (BES), Medical Outcome Study Short Form (MOS SF-36 v2) and Weight Efficacy Lifestyle Questionnaire (WEL). We also examined early weight loss and attendance at group sessions during the first 6 months. Attrition was recorded at the end of the trials. Participants included 504 overweight and obese adults seeking weight loss treatment. The sample was 84.92% female and 73.61% white, with a mean (± SD) age of 47.35 ± 9.75 years. After controlling for the specific trial, for every one unit increase in BMI, the odds of attrition increased by 11%. For every year increase in education, the odds of attrition decreased by 10%. Additional predictors of attrition included previous attempts to lose 50–79 lbs, age, not possessing health insurance, and BES, BDI, and HSS scores. At 6 months, the odds of attrition increased by 10% with reduced group session attendance. There was also an interaction between percent weight change and trial (p < .001). Multivariate analysis of the three trials showed education, age, BMI, and BES scores were independently associated with attrition (ps ≤ .01). These findings may inform the development of more robust strategies for reducing attrition

    Phagocytosis of Plasmodium falciparum ring-stage parasites predicts protection against malaria.

    Get PDF
    Ring-infected erythrocytes are the predominant asexual stage in the peripheral circulation but are rarely investigated in the context of acquired immunity against Plasmodium falciparum malaria. Here we compare antibody-dependent phagocytosis of ring-infected parasite cultures in samples from a controlled human malaria infection (CHMI) study (NCT02739763). Protected volunteers did not develop clinical symptoms, maintained parasitaemia below a predefined threshold of 500 parasites/μl and were not treated until the end of the study. Antibody-dependent phagocytosis of both ring-infected and uninfected erythrocytes from parasite cultures was strongly correlated with protection. A surface proteomic analysis revealed the presence of merozoite proteins including erythrocyte binding antigen-175 and -140 on ring-infected and uninfected erythrocytes, providing an additional antibody-mediated protective mechanism for their activity beyond invasion-inhibition. Competition phagocytosis assays support the hypothesis that merozoite antigens are the key mediators of this functional activity. Targeting ring-stage parasites may contribute to the control of parasitaemia and prevention of clinical malaria

    A comparative analysis of phenylpropanoid metabolism, N utilization, and carbon partitioning in fast- and slow-growing Populus hybrid clones

    Get PDF
    The biosynthetic costs of phenylpropanoid-derived condensed tannins (CTs) and phenolic glycosides (PGs) are substantial. However, despite reports of negative correlations between leaf phenolic content and growth of Populus, it remains unclear whether or how foliar biosynthesis of CT/PG interferes with tree growth. A comparison was made of carbon partitioning and N content in developmentally staged leaves, stems, and roots of two closely related Populus hybrid genotypes. The genotypes were selected as two of the most phytochemically divergent from a series of seven previously analysed clones that exhibit a range of height growth rates and foliar amino acid, CT, and PG concentrations. The objective was to analyse the relationship between leaf phenolic content and plant growth, using whole-plant carbon partitioning and N distribution data from the two divergent clones. Total N as a percentage of tissue dry mass was comparatively low, and CT and PG accrual comparatively high in leaves of the slow-growing clone. Phenylpropanoid accrual and N content were comparatively high in stems of the slow-growing clone. Carbon partitioning within phenylpropanoid and carbohydrate networks in developing stems differed sharply between clones. The results did not support the idea that foliar production of phenylpropanoid defence chemicals was the primary cause of reduced plant growth in the slow-growing clone. The findings are discussed in the context of metabolic mechanism(s) which may contribute to reduced N delivery from roots to leaves, thereby compromising tree growth and promoting leaf phenolic accrual in the slow-growing clone

    Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria.

    Get PDF
    The assessment of naturally-acquired and vaccine-induced immunity to blood-stage Plasmodium falciparum malaria is of long-standing interest. However, the field has suffered from a paucity of in vitro assays that reproducibly measure the anti-parasitic activity induced by antibodies in conjunction with immune cells. Here we optimize the antibody-dependent respiratory burst (ADRB) assay, which assesses the ability of antibodies to activate the release of reactive oxygen species from human neutrophils in response to P. falciparum blood-stage parasites. We focus particularly on assay parameters affecting serum preparation and concentration, and importantly assess reproducibility. Our standardized protocol involves testing each serum sample in singlicate with three independent neutrophil donors, and indexing responses against a standard positive control of pooled hyper-immune Kenyan sera. The protocol can be used to quickly screen large cohorts of samples from individuals enrolled in immuno-epidemiological studies or clinical vaccine trials, and requires only 6 μL of serum per sample. Using a cohort of 86 samples, we show that malaria-exposed individuals induce higher ADRB activity than malaria-naïve individuals. The development of the ADRB assay complements the use of cell-independent assays in blood-stage malaria, such as the assay of growth inhibitory activity, and provides an important standardized cell-based assay in the field

    The ratio of monocytes to lymphocytes in peripheral blood correlates with increased susceptibility to clinical malaria in Kenyan children.

    Get PDF
    BACKGROUND: Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention. METHODS AND FINDINGS: Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR)  =  2.7 (95% CI 1.42, 5.01, P  =  0.002) but not in those without detectable parasitaemia (HR  =  1.0 (95% CI 0.74, 1.42, P  =  0.9). CONCLUSIONS: We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual's capacity to mount an effective immune response to P. falciparum infection
    corecore