85 research outputs found

    Comparison of denitrification induced by various organic substances - reaction rates, microbiology and temperature effect

    Get PDF
    Widespread groundwater pollution with nitrate (NO3−) and the finite and decreasing geogenic NO3− degradation capacity in aquifers require a better understanding of potential treatment methods. This project aimed at exploring and comparing the efficiency of four organic substances as electron donors for heterotrophic denitrification. Circulation column experiments using sediment without NO3− degradation capacity and high agricultural NO3− groundwater were conducted. Acetate, glucose, ascorbic acid, and ethanol were added to these columns in three concentration steps to induce biological denitrification, whereby also temperature dependence of denitrification rates (room temperature and typical groundwater temperature of 10°C) was taken into account. Results show denitrification with all four carbon (C) sources with intensities varying considerably between electron donors. Comparison of the two temperature approaches shows substantial differences between applied organic substances and indicates T as an important variable for denitrification. Ethanol is clearly the most effective electron donor for biodenitrification in groundwater investigated in this study, with a stronger and more effective NO3− degradation at 10°C than at room temperature. In contrast, much higher reaction rates are achieved with glucose at room temperature, compared to 10°C. Denitrification with ascorbic acid is very low at both temperatures; its addition produces biomass which repeatedly led to column clogging. In the entire test series, nitrite (NO2−) accumulation occurred more frequently and in higher concentrations at 10°C. Analysis of microorganisms shows a strong modification in microbial community in reaction to the addition of different organic C as well as between the two temperature approaches

    An economic way of reducing health, environmental, and other pressures of urban traffic: a decision analysis on trip aggregation

    Get PDF
    BACKGROUND: Traffic congestion is rapidly becoming the most important obstacle to urban development. In addition, traffic creates major health, environmental, and economical problems. Nonetheless, automobiles are crucial for the functions of the modern society. Most proposals for sustainable traffic solutions face major political opposition, economical consequences, or technical problems. METHODS: We performed a decision analysis in a poorly studied area, trip aggregation, and studied decisions from the perspective of two different stakeholders, the passenger and society. We modelled the impact and potential of composite traffic, a hypothetical large-scale demand-responsive public transport system for the Helsinki metropolitan area, where a centralised system would collect the information on all trip demands online, would merge the trips with the same origin and destination into public vehicles with eight or four seats, and then would transmit the trip instructions to the passengers' mobile phones. RESULTS: We show here that in an urban area with one million inhabitants, trip aggregation could reduce the health, environmental, and other detrimental impacts of car traffic typically by 50–70%, and if implemented could attract about half of the car passengers, and within a broad operational range would require no public subsidies. CONCLUSION: Composite traffic provides new degrees of freedom in urban decision-making in identifying novel solutions to the problems of urban traffic

    Amino−Organolithium Compounds and their Aggregation for the Synthesis of Amino−Organoaluminium Compounds

    No full text
    A structural study of amino−organolithium compounds is presented with an emphasis on their aggregation as tetramers and dimers. These compounds were further used to generate their corresponding aluminium compounds whose crystal structures as well as those of neophyllithium and decomposition products are reported too. This study provides additional data for the future design and synthesis of amino−organolithium and -aluminium compounds

    Insulin Signaling and Insulin Sensitizing in Muscle and Liver of Obese Monkeys: Peroxisome Proliferator-Activated Receptor Gamma Agonist Improves Defective Activation of Atypical Protein Kinase C

    No full text
    Obesity, the metabolic syndrome, and aging share several pathogenic features in both humans and non-human primates, including insulin resistance and inflammation. Since muscle and liver are considered key integrators of metabolism, we sought to determine in biopsies from lean and obese aging rhesus monkeys the nature of defects in insulin activation and, further, the potential for mitigation of such defects by an in vivo insulin sensitizer, rosiglitazone, and a thiazolidinedione activator of the peroxisome proliferator-activated receptor gamma. The peroxisome proliferator-activated receptor gamma agonist reduced hyperinsulinemia, improved insulin sensitivity, lowered plasma triglycerides and free fatty acids, and increased plasma adiponectin. In muscle of obese monkeys, previously shown to exhibit defective insulin signaling, the insulin sensitizer improved insulin activation of atypical protein kinase C (aPKC), the defective direct activation of aPKC by phosphatidylinositol (PI)-3,4,5-(PO4)3, and 5′-AMP-activated protein kinase and increased carnitine palmitoyltransferase-1 mRNA expression, but it did not improve insulin activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase (IRS-1/PI3K), protein kinase B, or glycogen synthase. We found that, although insulin signaling was impaired in muscle, insulin activation of IRS-1/PI3K, IRS-2/PI3K, protein kinase B, and aPKC was largely intact in liver and that rosiglitazone improved insulin signaling to aPKC in muscle by improving responsiveness to PI-3,4,5-(PO4)3. Antioxid. Redox Signal. 14, 207–219

    Direct Hydrogenation of Aluminum via Stabilization with Triethylenediamine: A Mechanochemical Approach to Synthesize the Triethylenediamine ⋅ AlH<sub>3</sub> Adduct

    No full text
    Two approaches for the synthesis of the triethylenediamine (TEDA) ⋅ AlH3 adduct have been discovered. Both, the mechanochemical procedure and the wet chemical method lead to crystalline products. Starting from metallic Al powder and TEDA, ball milling under a pressure of 100 bar H2 facilitates a direct hydrogenation of aluminum with conversions up to 90 %. Structure determination from X‐ray powder diffraction data revealed an 1‐D‐coordination polymer of the type [TEDA−AlH3]n. Furthermore, solid‐state NMR techniques have been applied to analyze composition and structure of the products. Due to the polymeric arrangement, an enhanced stability of the material occurred which was investigated by thermal analysis showing a decomposition located above 200 °C. Overall, the stabilization of AlH3 by TEDA holds promise for hydrogen storage applications
    corecore