56 research outputs found

    On exact controllability of linear time delay systems of neutral type

    Get PDF
    The problem of exact null controllability is considered for linear neutral type systems with distributed delay. A characterization of this problem is given. The minimal time of controllability is precised. The results are based on the analysis of the Riesz basis property of eigenspaces in Hilbert space. Recent results on the moment problem and properties of exponential families are used

    The Role of IRE1α in the Degradation of Insulin mRNA in Pancreatic β-Cells

    Get PDF
    The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1α is a central component of the UPR. In pancreatic β-cells, IRE1α also functions in the regulation of insulin biosynthesis.Here we report that hyperactivation of IRE1α caused by chronic high glucose treatment or IRE1α overexpression leads to insulin mRNA degradation in pancreatic β-cells. Inhibition of IRE1α signaling using its dominant negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1α retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates.These results reveal a role of IRE1α in insulin mRNA expression under ER stress conditions caused by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of β-cell homeostasis and may explain why the β-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing the amount of misfolded insulin, which could be a source of “neo-autoantigens.

    On the use of State Predictors in Networked Control Systems

    Get PDF
    International audienceWithout pretending to be exhaustive, the aim of this chapter is to give an overview on the use of the state predictor in the context of time-delay systems, and more particularly for the stabilisation of networked control systems. We show that the stabilisation of a system through a deterministic network can be considered as the stabilisation of a time-delayed system with a delay of known dynamics. The predictor approach is proposed, along with some historical background on its application to time-delayed systems, to solve this problem. Some simulation results are also presented

    Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    Get PDF
    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man

    Predicting Pancreas Cell Fate Decisions and Reprogramming with a Hierarchical Multi-Attractor Model

    Get PDF
    Cell fate reprogramming, such as the generation of insulin-producing β cells from other pancreas cells, can be achieved by external modulation of key transcription factors. However, the known gene regulatory interactions that form a complex network with multiple feedback loops make it increasingly difficult to design the cell reprogramming scheme because the linear regulatory pathways as schemes of causal influences upon cell lineages are inadequate for predicting the effect of transcriptional perturbation. However, sufficient information on regulatory networks is usually not available for detailed formal models. Here we demonstrate that by using the qualitatively described regulatory interactions as the basis for a coarse-grained dynamical ODE (ordinary differential equation) based model, it is possible to recapitulate the observed attractors of the exocrine and β, δ, α endocrine cells and to predict which gene perturbation can result in desired lineage reprogramming. Our model indicates that the constraints imposed by the incompletely elucidated regulatory network architecture suffice to build a predictive model for making informed decisions in choosing the set of transcription factors that need to be modulated for fate reprogramming
    corecore