28 research outputs found

    Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects

    Get PDF
    Monthly averaged surface erythemal solar irradiance (UV-Ery) for local noon from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM), as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate change due to increasing greenhouse gas concentrations. The latter include effects of both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and the spread in the CCM projections. The calculations suggest that relative to 1980, annually mean UV-Ery in the 2090s will be on average 12% lower at high latitudes in both hemispheres, 3% lower at mid latitudes, and marginally higher (1 %) in the tropics. The largest reduction (16 %) is projected for Antarctica in October. Cloud effects are responsible for 2–3% of the reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (1 %). The year of return of erythemal irradiance to values of certain milestones (1965 and 1980) depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone transport by global circulation changes due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances

    Small molecule activators of the Trk receptors for neuroprotection

    Get PDF
    The neurotophin signaling network is critical to the development and survival of many neuronal populations. Especially sensitive to imbalances in the neurotrophin system, cholinergic neurons in the basal forebrain are progressively lost in Alzheimer's disease. Therapeutic use of neurotrophins to prevent this loss is hampered, however, by a number of pharmacological challenges. These include a lack of transport across the blood-brain barrier, rapid degradation in the circulation, and difficulty in production. In this review we discuss the evidence supporting the neurotrophin system's role in preventing neurodegeneration and survey some of the pharmacological strategies being pursued to develop effective therapeutics targeting neurotrophin function

    In vivo effects of neurotrophin-3 during sensory neurogenesis

    No full text
    The neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 are structurally related proteins regulating the number of neurons in peripheral ganglia of the nervous system. Increased levels of nerve growth factor or of brain-derived neurotrophic factor selectively prevent normally occurring neuronal death, while the targeted elimination of all three genes decreases neuronal numbers. As previous studies indicated that the lack of neurotrophin-3 affects sensory ganglia already during gangliogenesis, the levels of this neurotrophin were increased during selected periods of chick development. We found that early, but not late, applications of neurotrophin-3 lead to a marked decrease in neuronal numbers in peripheral sensory ganglia. This decrease is not seen with BDNF and does not selectively affect subtypes of dorsal root ganglion neurons. It is accompanied by, and might result from, a decrease in the number of proliferating neuroblasts in sensory ganglia of treated embryos
    corecore