267 research outputs found
Protection against Staphylococcus aureus colonization and infection by B-and T-cell-mediated mechanisms
© 2018 Zhang et al. Staphylococcus aureus is a major cause of morbidity and mortality worldwide. S. aureus colonizes 20 to 80% of humans at any one time and causes a variety of illnesses. Strains that are resistant to common antibiotics further complicate management. S. aureus vaccine development has been unsuccessful so far, largely due to the incomplete understanding of the mechanisms of protection against this pathogen. Here, we studied the role of different aspects of adaptive immunity induced by an S. aureus vaccine in protection against S. aureus bacteremia, dermonecrosis, skin abscess, and gastrointestinal (GI) colonization. We show that, depending on the challenge model, the contributions of vaccine-induced S. aureus-specific antibody and Th1 and Th17 responses to protection are different: antibodies play a major role in reducing mortality during S. aureus bacteremia, whereas Th1 or Th17 responses are essential for prevention of S. aureus skin abscesses and the clearance of bacteria from the GI tract. Both antibody-and T-cell-mediated mechanisms contribute to prevention of S. aureus dermonecrosis. Engagement of all three immune pathways results in the most robust protection under each pathological condition. Therefore, our results suggest that eliciting multipronged humoral and cellular responses to S. aureus antigens may be critical to achieve effective and comprehensive immune defense against this pathogen. IMPORTANCE S. aureus is a leading cause of healthcare-and community-associated bacterial infections. S. aureus causes various illnesses, including bacteremia, meningitis, endocarditis, pneumonia, osteomyelitis, sepsis, and skin and soft tissue infections. S. aureus colonizes between 20 and 80% of humans; carriers are at increased risk for infection and transmission to others. The spread of multidrug-resistant strains limits antibiotic treatment options. Vaccine development against S. aureus has been unsuccessful to date, likely due to an inadequate understanding about the mechanisms of immune defense against this pathogen. The significance of our work is in illustrating the necessity of generating multipronged B-cell, Th1-, and Th17-mediated responses to S. aureus antigens in conferring enhanced and broad protection against S. aureus invasive infection, skin and soft tissue infection, and mucosal colonization. Our work thus, provides important insights for future vaccine development against this pathogen
Minimum Decision Cost for Quantum Ensembles
For a given ensemble of independent and identically prepared particles,
we calculate the binary decision costs of different strategies for measurement
of polarised spin 1/2 particles. The result proves that, for any given values
of the prior probabilities and any number of constituent particles, the cost
for a combined measurement is always less than or equal to that for any
combination of separate measurements upon sub-ensembles. The Bayes cost, which
is that associated with the optimal strategy (i.e., a combined measurement) is
obtained in a simple closed form.Comment: 11 pages, uses RevTe
Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing
A quantum computer can solve hard problems - such as prime factoring,
database searching, and quantum simulation - at the cost of needing to protect
fragile quantum states from error. Quantum error correction provides this
protection, by distributing a logical state among many physical qubits via
quantum entanglement. Superconductivity is an appealing platform, as it allows
for constructing large quantum circuits, and is compatible with
microfabrication. For superconducting qubits the surface code is a natural
choice for error correction, as it uses only nearest-neighbour coupling and
rapidly-cycled entangling gates. The gate fidelity requirements are modest: The
per-step fidelity threshold is only about 99%. Here, we demonstrate a universal
set of logic gates in a superconducting multi-qubit processor, achieving an
average single-qubit gate fidelity of 99.92% and a two-qubit gate fidelity up
to 99.4%. This places Josephson quantum computing at the fault-tolerant
threshold for surface code error correction. Our quantum processor is a first
step towards the surface code, using five qubits arranged in a linear array
with nearest-neighbour coupling. As a further demonstration, we construct a
five-qubit Greenberger-Horne-Zeilinger (GHZ) state using the complete circuit
and full set of gates. The results demonstrate that Josephson quantum computing
is a high-fidelity technology, with a clear path to scaling up to large-scale,
fault-tolerant quantum circuits.Comment: 15 pages, 13 figures, including supplementary materia
Evidence for Planet-induced Chromospheric Activity on HD 179949
We have detected the synchronous enhancement of Ca II H & K emission with the
short-period planetary orbit in HD 179949. High-resolution spectra taken on
three observing runs extending more than a year show the enhancement coincides
with phi ~ 0 (the sub-planetary point) of the 3.093-day orbit with the effect
persisting for more than 100 orbits. The synchronous enhancement is consistent
with planet-induced chromospheric heating by magnetic rather than tidal
interaction. Something which can only be confirmed by further observations.
Independent observations are needed to determine whether the stellar rotation
is sychronous with the planet's orbit. Of the five 51 Peg-type systems
monitored, HD 179949 shows the greatest chromospheric H & K activity. Three
others show significant nightly variations but the lack of any phase coherence
prevents us saying whether the activity is induced by the planet. Our two
standards, tau Ceti and the Sun, show no such nightly variations.Comment: 10 pages, 6 figures. Submitted to Ap
Reactions of a Be-10 beam on proton and deuteron targets
The extraction of detailed nuclear structure information from transfer
reactions requires reliable, well-normalized data as well as optical potentials
and a theoretical framework demonstrated to work well in the relevant mass and
beam energy ranges. It is rare that the theoretical ingredients can be tested
well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has
been examined through the 10Be(d,p) reaction in inverse kinematics at
equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of
Be-10 on protons was used to select optical potentials for the analysis of the
transfer data. Additionally, data from the elastic and inelastic scattering of
Be-10 on deuterons was used to fit optical potentials at the four measured
energies. Transfers to the two bound states and the first resonance in Be-11
were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA).
Consistent values of the spectroscopic factor of both the ground and first
excited states were extracted from the four measurements, with average values
of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first
resonance were found to be sensitive to the size of the energy bin used and
therefore could not be used to extract a spectroscopic factor.Comment: 16 Pages, 10 figure
A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci
The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function
- …