65 research outputs found

    In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.

    Get PDF
    The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively

    Lipoxygenases and Poly(ADP-Ribose) Polymerase in Amyloid Beta Cytotoxicity

    Get PDF
    The 12/15-lipoxygenase(s) (LOX), poly(ADP-ribose) polymerase (PARP-1) activity and mitochondrial apoptosis inducing factor (AIF) protein in the amyloid β (Aβ) toxicity were investigated in PC12 cells that express either wild-type (APPwt) or double Swedish mutation (APPsw) forms of human Aβ precursor protein. Different levels of Aβ secretion and free radicals formation characterize these cells. The results demonstrated a relationship between the Aβ levels and LOX protein expression and activity. High Aβ concentration in APPsw cells correlated with a significant increase in free radicals and LOX activation, which leads to translocation of p65/NF-κB into the nucleus. An increase in AIF expression in mitochondria was observed concurrently with inhibition of PARP-1 activity in the nuclear fraction of APPsw cells. We suggested that AIF accumulation in mitochondria may be involved in adaptive/protective processes. However, inhibition of PARP-1 may be responsible for the disturbances in transcription and DNA repair as well as the degeneration of APP cells. Under conditions of increased nitrosative stress, evoked by the nitric oxide donor, sodium nitroprusside (SNP, 0.5 mM), 70–80% of all cells types died after 24 h, significantly more in APPsw cells. There was no further significant change in mitochondrial AIF level and PARP-1 activity compared to corresponding non-treated cells. Only one exception was observed in PC12 control, where SNP significantly inhibits PARP-1 activity. Moreover, SNP significantly activated gene expression for 12/15-LOX in all types of investigated cells. Inhibitors of all LOX isoforms and specific inhibitor of 12-LOX enhanced the survival of cells that were subjected to SNP. We conclude that the LOX pathways may play a role in Aβ toxicity and in nitrosative-stress-induced cell death and that inhibition of these pathways offers novel protective strategies

    Bioluminescence monitoring of promoter activity in vitro and in vivo

    Get PDF
    © 2017, Springer Science+Business Media LLC. The application of luciferase reporter genes to provide quantitative outputs for the activation of promoters is a well-established technique in molecular biology. Luciferase catalyzes an enzymatic reaction, which in the presence of the substrate luciferin produces photons of light relative to its molar concentration. The luciferase transgene can be genetically inserted at the first intron of a target gene to act as a surrogate for the gene’s endogenous expression in cells and transgenic mice. Alternatively, promoter sequences can be excised and/or amplified from genomic sources or constructed de novo and cloned upstream of luciferase in an expression cassette transfected into cells. More recently, the development of synthetic promoters where the essential components of an RNA polymerase binding site and transcriptional start site are fused with various upstream regulatory sequences are being applied to drive reporter gene expression. We have developed a high-throughput cloning strategy to develop lentiviral luciferase reporters driven by transcription factor activated synthetic promoters. Lentiviruses integrate their payload cassette into the host cell genome, thereby facilitating the study of gene expression not only in the transduced cells but also within all subsequent daughter cells. In this manuscript we describe the design, vector construction, lentiviral transduction, and luciferase quantitation of transcription factor activated reporters (TFARs) in vitro and in vivo

    A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice

    Get PDF
    Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate1,2. We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR/Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7% – 20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet

    Anti-hyperlipidemic effect of carcia papaya L in sprague dawley rats

    No full text
    No Abstract.Nigerian Journal of Natural Products and Medicine Vol. 10 () 2006: pp.69-7

    Inhibition of cyclooxygenase-2 impairs the expression of essential plasma cell transcription factors and human B-lymphocyte differentiation

    No full text
    Cyclooxygenase (Cox) inhibitors are among the most widely used and commonly prescribed medications. Relatively little is understood about their influence on human immune responses. Herein, we discovered a novel and important mechanism whereby non-steroidal anti-inflammatory drugs (NSAIDs) blunt human B-cell antibody production. We demonstrate that the Cox-2 selective small molecule inhibitors SC-58125 and NS-398 attenuate the production of human antibody isotypes including immunoglobulin M (IgM), IgG1, IgG2, IgG3 and IgG4. In addition, inhibition of Cox-2 significantly reduced the generation of CD38+ IgM+ and CD38+ IgG+ antibody-secreting cells. Interestingly, we discovered that inhibition of Cox-2 activity in normal human B cells severely reduced the messenger RNA and protein levels of the essential plasma cell transcription factor, Blimp-1. These observations were mirrored in Cox-2-deficient mice, which had reduced CD138+ plasma cells and a near loss of Blimp-1 expression. These new findings demonstrate a critical role for Cox-2 in the terminal differentiation of human B lymphocytes to antibody-secreting plasma cells. The use of NSAIDs may adversely influence the efficacy of vaccines, especially in the immunocompromised, elderly and when vaccines are weakly immunogenic

    Isolation and identification of fatty acids from berries of sea buckthorn (<i style="">Hippophae rhamnoides)</i><i style=""></i>

    No full text
    2390-2392Five fatty acids, 2-hydroxydecanoic acid, nona-7-enoic acid, undec-9-en-7-ynoic acid, 13-phenyltridecanoic acid and 5, 9, 21-nonacosatrienoic acid have been isolated and characterized from the ethanol extract of the sea buckthorn berries (Hippophae rhamnoides). The structure of new fatty acid namely, undec-9-en-7-ynoic acid (AS-3) has been elucidated by the spectroscopic techniques
    corecore