996 research outputs found

    Mechanical systems subjected to generalized nonholonomic constraints

    Full text link
    We study mechanical systems subject to constraint functions that can be dependent at some points and independent at the rest. Such systems are modelled by means of generalized codistributions. We discuss how the constraint force can transmit an impulse to the motion at the points of dependence and derive an explicit formula to obtain the ``post-impact'' momentum in terms of the ``pre-impact'' momentum.Comment: 24 pages, no figure

    Rotating saddle trap as Foucault's pendulum

    Get PDF
    One of the many surprising results found in the mechanics of rotating systems is the stabilization of a particle in a rapidly rotating planar saddle potential. Besides the counterintuitive stabilization, an unexpected precessional motion is observed. In this note we show that this precession is due to a Coriolis-like force caused by the rotation of the potential. To our knowledge this is the first example where such force arises in an inertial reference frame. We also propose an idea of a simple mechanical demonstration of this effect.Comment: 13 pages, 9 figure

    Decorated vertices with 3-edged cells in 2D foams: exact solutions and properties

    Full text link
    The energy, area and excess energy of a decorated vertex in a 2D foam are calculated. The general shape of the vertex and its decoration are described analytically by a reference pattern mapped by a parametric Moebius transformation. A single parameter of control allows to describe, in a common framework, different types of decorations, by liquid triangles or 3-sided bubbles, and other non-conventional cells. A solution is proposed to explain the stability threshold in the flower problem.Comment: 13 pages, 17 figure

    Chaotic Phenomenon in Nonlinear Gyrotropic Medium

    Full text link
    Nonlinear gyrotropic medium is a medium, whose natural optical activity depends on the intensity of the incident light wave. The Kuhn's model is used to study nonlinear gyrotropic medium with great success. The Kuhn's model presents itself a model of nonlinear coupled oscillators. This article is devoted to the study of the Kuhn's nonlinear model. In the first paragraph of the paper we study classical dynamics in case of weak as well as strong nonlinearity. In case of week nonlinearity we have obtained the analytical solutions, which are in good agreement with the numerical solutions. In case of strong nonlinearity we have determined the values of those parameters for which chaos is formed in the system under study. The second paragraph of the paper refers to the question of the Kuhn's model integrability. It is shown, that at the certain values of the interaction potential this model is exactly integrable and under certain conditions it is reduced to so-called universal Hamiltonian. The third paragraph of the paper is devoted to quantum-mechanical consideration. It shows the possibility of stochastic absorption of external field energy by nonlinear gyrotropic medium. The last forth paragraph of the paper is devoted to generalization of the Kuhn's model for infinite chain of interacting oscillators

    The Possibility of Reconciling Quantum Mechanics with Classical Probability Theory

    Full text link
    We describe a scheme for constructing quantum mechanics in which a quantum system is considered as a collection of open classical subsystems. This allows using the formal classical logic and classical probability theory in quantum mechanics. Our approach nevertheless allows completely reproducing the standard mathematical formalism of quantum mechanics and identifying its applicability limits. We especially attend to the quantum state reduction problem.Comment: Latex, 14 pages, 1 figur

    Geometry dominated fluid adsorption on sculptured substrates

    Full text link
    Experimental methods allow the shape and chemical composition of solid surfaces to be controlled at a mesoscopic level. Exposing such structured substrates to a gas close to coexistence with its liquid can produce quite distinct adsorption characteristics compared to that occuring for planar systems, which may well play an important role in developing technologies such as super-repellent surfaces or micro-fluidics. Recent studies have concentrated on adsorption of liquids at rough and heterogeneous substrates and the characterisation of nanoscopic liquid films. However, the fundamental effect of geometry has hardly been addressed. Here we show that varying the shape of the substrate can exert a profound influence on the adsorption isotherms allowing us to smoothly connect wetting and capillary condensation through a number of novel and distinct examples of fluid interfacial phenomena. This opens the possibility of tailoring the adsorption properties of solid substrates by sculpturing their surface shape.Comment: 6 pages, 4 figure

    Analysis of Transient Processes in a Radiophysical Flow System

    Full text link
    Transient processes in a third-order radiophysical flow system are studied and a map of the transient process duration versus initial conditions is constructed and analyzed. The results are compared to the arrangement of submanifolds of the stable and unstable cycles in the Poincare section of the system studied.Comment: 3 pages, 2 figure

    Conservation of energy and momenta in nonholonomic systems with affine constraints

    Full text link
    We characterize the conditions for the conservation of the energy and of the components of the momentum maps of lifted actions, and of their `gauge-like' generalizations, in time-independent nonholonomic mechanical systems with affine constraints. These conditions involve geometrical and mechanical properties of the system, and are codified in the so-called reaction-annihilator distribution

    Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

    Get PDF
    This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).Comment: 45 page

    Discrete Nonholonomic LL Systems on Lie Groups

    Full text link
    This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conservation is discussed.Comment: 32 pages, 13 figure
    corecore