4,322 research outputs found
Wikimedia and universities: contributing to the global commons in the Age of Disinformation
In its first 30 years the world wide web has revolutionized the information environment. However, its impact has been negative as well as positive, through corporate misuse of personal data and due to its potential for enabling the spread of disinformation.
As a large-scale collaborative platform funded through charitable donations, with a mission to provide universal free access to knowledge as a public good, Wikipedia is one of the most popular websites in the world. This paper explores the role of Wikipedia in the information ecosystem where it occupies a unique role as a bridge between informal discussion and scholarly publication. We explore how it relates to the broader Wikimedia ecosystem, through structured data on Wikidata for instance, and openly licensed media on Wikimedia Commons. We consider the potential benefits for universities in the areas of information literacy and research impact, and investigate the extent to which universities in the UK and their libraries are engaging strategically with Wikimedia, if at all
Are infestations of Cymomelanodactylus killing Acropora cytherea in the Chagos archipelago?
Associations between branching corals and infaunal crabs are well
known, mostly due to the beneficial effects of Trapezia and Tetralia
crabs in protecting host corals from crown-of-thorns starfish (e.g.,
Pratchett et al. 2000) and/or sedimentation (Stewart et al. 2006).
These crabs are obligate associates of live corals and highly prevalent
across suitable coral hosts, with 1–2 individuals per colony
(Patton 1994). Cymo melanodactylus (Fig. 1) are also prevalent in
branching corals, mostly Acropora, and are known to feed on live
coral tissue, but are generally found in low abundance (<3 per
colony) and do not significantly affect their host corals (e.g., Patton
1994). In the Chagos archipelago, however, infestations of Cymo
melanodactylus were found on recently dead and dying colonies of
Acropora cytherea
Perfect Reflection of Light by an Oscillating Dipole
We show theoretically that a directional dipole wave can be perfectly
reflected by a single point-like oscillating dipole. Furthermore, we find that
in the case of a strongly focused plane wave up to 85 % of the incident light
can be reflected by the dipole. Our results hold for the full spectrum of the
electromagnetic interactions and have immediate implications for achieving
strong coupling between a single propagating photon and a single quantum
emitter.Comment: 3 figure
The Anti-Coincidence Detector for the GLAST Large Area Telescope
This paper describes the design, fabrication and testing of the
Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope
(GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against
the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders
of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector,
requiring a total active area of ~8.3 square meters. The ACD detector utilizes
plastic scintillator tiles with wave-length shifting fiber readout. In order to
suppress self-veto by shower particles at high gamma-ray energies, the ACD is
segmented into 89 tiles of different sizes. The overall ACD efficiency for
detection of singly charged relativistic particles entering the tracking
detector from the top or sides of the LAT exceeds the required 0.9997.Comment: 33 pages, 19 figure
Student teamwork: developing virtual support for team projects
In the 21st century team working increasingly requires online cooperative skills as well as more traditional skills associated with face to face team working. Virtual team working differs from face to face team working in a number of respects, such as interpreting the alternatives to visual cues, adapting to synchronous communication, developing trust and cohesion and cultural interpretations. However, co-located student teams working within higher education can only simulate team working as it might be experienced in organisations today. For example, students can learn from their mistakes in a non-threatening environment, colleagues tend to be established friends and assessing teamwork encourages behaviour such as “free-riding”. Using a prototyping approach, which involves students and tutors, a system has been designed to support learners engaged in team working. This system helps students to achieve to their full potential and appreciate issues surrounding virtual teamwork. The Guardian Agent system enables teams to allocate project tasks and agree ground rules for the team according to individuals’ preferences. Results from four cycles of its use are presented, together with modifications arising from iterations of testing. The results show that students find the system useful in preparing for team working, and have encouraged further development of the system
Phase sensitive detection of dipole radiation in a fiber-based high numerical aperture optical system
We theoretically study the problem of detecting dipole radiation in an
optical system of high numerical aperture in which the detector is sensitive to
\textit{field amplitude}. In particular, we model the phase sensitive detector
as a single-mode cylindrical optical fiber. We find that the maximum in
collection efficiency of the dipole radiation does not coincide with the
optimum resolution for the light gathering instrument. The calculated results
are important for analyzing fiber-based confocal microscope performance in
fluorescence and spectroscopic studies of single molecules and/or quantum dots.Comment: 12 pages, 2 figure
Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology
Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of ‘accessory genes,’ such as antibiotic resistance genes, as well as ‘backbone’ loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made
Azimuthally polarized spatial dark solitons: exact solutions of Maxwell's equations in a Kerr medium
Spatial Kerr solitons, typically associated with the standard paraxial
nonlinear Schroedinger equation, are shown to exist to all nonparaxial orders,
as exact solutions of Maxwell's equations in the presence of vectorial Kerr
effect. More precisely, we prove the existence of azimuthally polarized,
spatial, dark soliton solutions of Maxwell's equations, while exact linearly
polarized (2+1)-D solitons do not exist. Our ab initio approach predicts the
existence of dark solitons up to an upper value of the maximum field amplitude,
corresponding to a minimum soliton width of about one fourth of the wavelength.Comment: 4 pages, 4 figure
Pathwise Sensitivity Analysis in Transient Regimes
The instantaneous relative entropy (IRE) and the corresponding instanta-
neous Fisher information matrix (IFIM) for transient stochastic processes are
pre- sented in this paper. These novel tools for sensitivity analysis of
stochastic models serve as an extension of the well known relative entropy rate
(RER) and the corre- sponding Fisher information matrix (FIM) that apply to
stationary processes. Three cases are studied here, discrete-time Markov
chains, continuous-time Markov chains and stochastic differential equations. A
biological reaction network is presented as a demonstration numerical example
- …