79 research outputs found

    Detection of Diffusely Abnormal White Matter in Multiple Sclerosis on Multiparametric Brain MRI Using Semi-Supervised Deep Learning

    Get PDF
    In addition to focal lesions, diffusely abnormal white matter (DAWM) is seen on brain MRI of multiple sclerosis (MS) patients and may represent early or distinct disease processes. The role of MRI-observed DAWM is understudied due to a lack of automated assessment methods. Supervised deep learning (DL) methods are highly capable in this domain, but require large sets of labeled data. To overcome this challenge, a DL-based network (DAWM-Net) was trained using semi-supervised learning on a limited set of labeled data for segmentation of DAWM, focal lesions, and normal-appearing brain tissues on multiparametric MRI. DAWM-Net segmentation performance was compared to a previous intensity thresholding-based method on an independent test set from expert consensus (N = 25). Segmentation overlap by Dice Similarity Coefficient (DSC) and Spearman correlation of DAWM volumes were assessed. DAWM-Net showed DSC \u3e 0.93 for normal-appearing brain tissues and DSC \u3e 0.81 for focal lesions. For DAWM-Net, the DAWM DSC was 0.49 ± 0.12 with a moderate volume correlation (ρ = 0.52, p \u3c 0.01). The previous method showed lower DAWM DSC of 0.26 ± 0.08 and lacked a significant volume correlation (ρ = 0.23, p = 0.27). These results demonstrate the feasibility of DL-based DAWM auto-segmentation with semi-supervised learning. This tool may facilitate future investigation of the role of DAWM in MS

    Operational flood management under large-scale extreme conditions, using the example of the Middle Elbe

    Get PDF
    In addition to precautionary or technical flood protection measures, short-term strategies of the operational management, i.e. the initiation and co-ordination of preventive measures during and/or before a flood event are crucially for the reduction of the flood damages. This applies especially for extreme flood events. These events are rare, but may cause a protection measure to be overtopped or even to fail and be destroyed. In such extreme cases, reliable decisions must be made and emergency measures need to be carried out to prevent even larger damages from occurring. <br><br> Based on improved methods for meteorological and hydrological modelling a range of (physically based) extreme flood scenarios can be derived from historical events by modification of air temperature and humidity, shifting of weather fields and recombination of flood relevant event characteristics. By coupling the large scale models with hydraulic and geotechnical models, the whole flood-process-chain can be analysed right down to the local scale. With the developed GIS-based tools for hydraulic modelling <i>FlowGIS</i> and the Dike-Information-System, (IS-dikes) it is possible to quantify the endangering shortly before or even during a flood event, so the decision makers can evaluate possible options for action in operational mode

    A Radiomics Model Based on Synthetic MRI Acquisition for Predicting Neoadjuvant Systemic Treatment Response in Triple-Negative Breast Cancer

    Get PDF
    Purpose To determine if a radiomics model based on quantitative maps acquired with synthetic MRI (SyMRI) is useful for predicting neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, 181 women diagnosed with stage I–III TNBC were scanned with a SyMRI sequence at baseline and at midtreatment (after four cycles of NAST), producing T1, T2, and proton density (PD) maps. Histopathologic analysis at surgery was used to determine pathologic complete response (pCR) or non-pCR status. From three-dimensional tumor contours drawn on the three maps, 310 histogram and textural features were extracted, resulting in 930 features per scan. Radiomic features were compared between pCR and non-pCR groups by using Wilcoxon rank sum test. To build a multivariable predictive model, logistic regression with elastic net regularization and cross-validation was performed for texture feature selection using 119 participants (median age, 52 years [range, 26–77 years]). An independent testing cohort of 62 participants (median age, 48 years [range, 23–74 years]) was used to evaluate and compare the models by area under the receiver operating characteristic curve (AUC). Results Univariable analysis identified 15 T1, 10 T2, and 12 PD radiomic features at midtreatment that predicted pCR with an AUC greater than 0.70 in both the training and testing cohorts. Multivariable radiomics models of maps acquired at midtreatment demonstrated superior performance over those acquired at baseline, achieving AUCs as high as 0.78 and 0.72 in the training and testing cohorts, respectively. Conclusion SyMRI-based radiomic features acquired at midtreatment are potentially useful for identifying early NAST responders in TNBC

    Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making

    Get PDF
    Understanding how cortical circuits generate complex behavior requires investigating the cell types that comprise them. Functional differences across pyramidal neuron (PyN) types have been observed within cortical areas, but it is not known whether these local differences extend throughout the cortex, nor whether additional differences emerge when larger-scale dynamics are considered. We used genetic and retrograde labeling to target pyramidal tract, intratelencephalic and corticostriatal projection neurons and measured their cortex-wide activity. Each PyN type drove unique neural dynamics, both at the local and cortex-wide scales. Cortical activity and optogenetic inactivation during an auditory decision task revealed distinct functional roles. All PyNs in parietal cortex were recruited during perception of the auditory stimulus, but, surprisingly, pyramidal tract neurons had the largest causal role. In frontal cortex, all PyNs were required for accurate choices but showed distinct choice tuning. Our results reveal that rich, cell-type-specific cortical dynamics shape perceptual decisions

    Quantitative Apparent Diffusion Coefficients From Peritumoral Regions as Early Predictors of Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer

    Get PDF
    BACKGROUND: Pathologic complete response (pCR) to neoadjuvant systemic therapy (NAST) in triple-negative breast cancer (TNBC) is a strong predictor of patient survival. Edema in the peritumoral region (PTR) has been reported to be a negative prognostic factor in TNBC. PURPOSE: To determine whether quantitative apparent diffusion coefficient (ADC) features from PTRs on reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) predict the response to NAST in TNBC. STUDY TYPE: Prospective. POPULATION/SUBJECTS: A total of 108 patients with biopsy-proven TNBC who underwent NAST and definitive surgery during 2015-2020. FIELD STRENGTH/SEQUENCE: A 3.0 T/rFOV single-shot diffusion-weighted echo-planar imaging sequence (DWI). ASSESSMENT: Three scans were acquired longitudinally (pretreatment, after two cycles of NAST, and after four cycles of NAST). For each scan, 11 ADC histogram features (minimum, maximum, mean, median, standard deviation, kurtosis, skewness and 10th, 25th, 75th, and 90th percentiles) were extracted from tumors and from PTRs of 5 mm, 10 mm, 15 mm, and 20 mm in thickness with inclusion and exclusion of fat-dominant pixels. STATISTICAL TESTS: ADC features were tested for prediction of pCR, both individually using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC), and in combination in multivariable models with k-fold cross-validation. A P value \u3c 0.05 was considered statistically significant. RESULTS: Fifty-one patients (47%) had pCR. Maximum ADC from PTR, measured after two and four cycles of NAST, was significantly higher in pCR patients (2.8 ± 0.69 vs 3.5 ± 0.94 mm DATA CONCLUSION: Quantitative ADC features from PTRs may serve as early predictors of the response to NAST in TNBC. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4

    Assessment of Response to Neoadjuvant Systemic Treatment in Triple-Negative Breast Cancer Using Functional Tumor Volumes from Longitudinal Dynamic Contrast-Enhanced MRI

    Get PDF
    Early assessment of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) is critical for patient care in order to avoid the unnecessary toxicity of an ineffective treatment. We assessed functional tumor volumes (FTVs) from dynamic contrast-enhanced (DCE) MRI after 2 cycles (C2) and 4 cycles (C4) of NAST as predictors of response in TNBC. A group of 100 patients with stage I-III TNBC who underwent DCE MRI at baseline, C2, and C4 were included in this study. Tumors were segmented on DCE images of 1 min and 2.5 min post-injection. FTVs were measured using the optimized percentage enhancement (PE) and signal enhancement ratio (SER) thresholds. The Mann-Whitney test was used to compare the performance of the FTVs at C2 and C4. Of the 100 patients, 49 (49%) had a pathologic complete response (pCR) and 51 (51%) had a non-pCR. The maximum area under the receiving operating characteristic curve (AUC) for predicting the treatment response was 0.84 (p \u3c 0.001) for FTV at C4 followed by FTV at C2 (AUC = 0.82, p \u3c 0.001). The FTV measured at baseline was not able to discriminate pCR from non-pCR. FTVs measured on DCE MRI at C2, as well as at C4, of NAST can potentially predict pCR and non-pCR in TNBC patients

    Deep Learning for Fully Automatic Tumor Segmentation on Serially Acquired Dynamic Contrast-Enhanced MRI Images of Triple-Negative Breast Cancer

    Get PDF
    Accurate tumor segmentation is required for quantitative image analyses, which are increasingly used for evaluation of tumors. We developed a fully automated and high-performance segmentation model of triple-negative breast cancer using a self-configurable deep learning framework and a large set of dynamic contrast-enhanced MRI images acquired serially over the patients\u27 treatment course. Among all models, the top-performing one that was trained with the images across different time points of a treatment course yielded a Dice similarity coefficient of 93% and a sensitivity of 96% on baseline images. The top-performing model also produced accurate tumor size measurements, which is valuable for practical clinical applications

    Mittelalter im Labor

    Get PDF
    Mit diesem Band präsentiert das Schwerpunktprogramm 1173 der Deutschen Forschungsgemeinschaft „Integration und Desintegration der Kulturen im europäischen Mittelalter“ erste Ergebnisse seiner Arbeit. Von Anfang an war ihm die Aufgabe gestellt, das mittelalterliche Europa in transkultureller Perspektive und auf Wegen einer transdisziplinären Wissenschaft zu erforschen und zu begreifen. Immer ging es darum, die disziplinär verfassten Einzelwissenschaften durch transdisziplinäre Arbeit zu ergänzen. Das wissenschaftliche Anliegen des Programms ist es, das europäische Mittelalter von seinen geografischen Rändern und seinen kulturellen Differenzen her zu erforschen und zu beschreiben. Der holistischen Frage nach der Einheit Europas wird die innere Vielfalt als gegenständlicher Ausgangspunkt entgegengesetzt. Europa wird nicht als abgeschlossenes, kohärentes Gebilde verstanden, sondern als ein Kontinent, dessen permanente Austausch- und Wechselbeziehungen zwischen den verschiedenen Regionen und Kulturen überhaupt erst zur Ausbildung seiner charakteristischen Merkmale geführt haben

    Natural Intelligence and Anthropic Reasoning

    Get PDF
    This paper aims to justify the concept of natural intelligence in the biosemiotic context. I will argue that the process of life is (i) a cognitive/semiotic process and (ii) that organisms, from bacteria to animals, are cognitive or semiotic agents. To justify these arguments, the neural-type intelligence represented by the form of reasoning known as anthropic reasoning will be compared and contrasted with types of intelligence explicated by four disciplines of biology – relational biology, evolutionary epistemology, biosemiotics and the systems view of life – not biased towards neural intelligence. The comparison will be achieved by asking questions related to the process of observation and the notion of true observers. To answer the questions I will rely on a range of established concepts including SETI (search for extraterrestrial intelligence), Fermi’s paradox, bacterial cognition, versions of the panspermia theory, as well as some newly introduced concepts including biocivilisations, cognitive/semiotic universes, and the cognitive/semiotic multiverse. The key point emerging from the answers is that the process of cognition/semiosis – the essence of natural intelligence – is a biological universal.Brunel University Londo
    corecore