1,730 research outputs found

    Vector and axial-vector correlators in a chirally symmetric model

    Get PDF
    We present a chirally symmetric hadronic model for the vector and axial-vector correlators in vacuum. The dominant contributions to these correlators come from intermediate pions, rho and a_1 mesons which are calculated in one-loop approximation. The resulting spectral functions are compared with the data obtained by the ALEPH collaboration from tau decay. In the vector channel we find good agreement up to q^2 = 1 GeV^2, in the transverse axial-vector channel up to q^2 = 2 GeV^2, corresponding to the regimes dominated by two-pion or three-pion decay channels, respectively. The longitudinal axial correlator is in almost perfect agreement with the PCAC result.Comment: 32 pages, 25 figures included; revised version with one additional figure and appendix, accepted for publication in Nucl. Phys.

    Multiple exciton generation in VO2

    Full text link
    Multiple exciton generation (MEG) is a widely studied phenomenon in semiconductor nanocrystals and quantum dots, aimed at improving the energy conversion efficiency of solar cells. MEG is the process wherein incident photon energy is significantly larger than the band gap, and the resulting photoexcited carriers relax by generating additional electron-hole pairs, rather than decaying by heat dissipation. Here, we present an experimental demonstration of MEG in a prototype strongly correlated material, VO2, through photocurrent spectroscopy and ultrafast transient reflectivity measurements, both of which are considered the most prominent ways for detecting MEG in working devices. The key result of this paper is the observation of MEG at room temperature (in a correlated insulating phase of VO2), and the estimated threshold for MEG is 3Eg. We demonstrate an escalated photocurrent due to MEG in VO2, and quantum efficiency is found to exceed 100%. Our studies suggest that this phenomenon is a manifestation of expeditious impact ionization due to stronger electron correlations and could be exploited in a large number of strongly correlated materials.Comment: 6 pages, 5 figures, Physical Review

    Characterizing the normal proteome of human ciliary body

    Get PDF
    BACKGROUND: The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body. RESULTS: In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis. CONCLUSIONS: More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia

    Potential benefits and therapeutic applications of "Panchgavya" therapy (Cowpathy) for human and animal health: Current scientific knowledge

    Get PDF
    Cow's milk, urine, dung, ghee, and curd (together known as "Panchgavya") have incomparable medicinal value in Ayurveda and ancient Indian clinical methods. Panchgavya is also known as Cowpathy in Ayurveda. In India, the cow is revered as a goddess known as "Gaumata" because of its nurturing qualities similar to those of a mother. Almost no adverse effects are associated with using Panchgavya, which is why it is recommended in Ayurveda for treating disorders affecting numerous body systems. Its possible antimicrobial effects have piqued the curiosity of medical researchers and practitioners. Cow milk is widely regarded as a nutritious diet and has been shown to effectively treat various medical conditions, including high body temperature, pain, cancer, diabetes, kidney diseases, and weakness. Milk can prevent the growth of microorganisms, has erotic qualities when combined with the leaves of medicinal herbs, and the fat in milk has anticancer characteristics. Toned and skim milk, lassi, yoghurt, cottage cheese, and khoa all come from milk and have important medicinal characteristics. Curd (dahi) is recommended as a blood purifier for conditions such as hemorrhoids, piles, and gastrointestinal issues. Ghee made from cows has been shown to boost immunity. It is important to highlight the use of cow dung as an antifungal and for treating malaria and tuberculosis. It has the potential to aid in the development of a populace free from disease, the creation of sustainable energy systems, the fulfilment of all nutritional needs, the elimination of poverty, the promotion of organic farming culture, and the like. Cow urine is a powerful remedy for numerous medical conditions, including but not limited to epileptic convulsions, diabetes, hepatitis, inflammation, fever, and anaemia. The current review article explores how the Panchgavya ingredients can be employed to safeguard human and animal health

    RNA Interference Mediated Inhibition of Dengue Virus Multiplication and Entry in HepG2 Cells

    Get PDF
    Background: Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic strategy to block infection. This study aimed to investigate the effect of silencing the GRP78 and clathrin-mediated endocytosis on dengue virus entry and multiplication into HepG2 cells. Methodology/Principal Findings: HepG2 cells were transfected using specific siRNAs to silence the cellular surface receptor (GRP78) and clathrin-mediated endocytosis pathway. Gene expression analysis showed a marked down-regulation of the targeted genes (87.2%, 90.3%, and 87.8 % for GRP78, CLTC, and DNM2 respectively) in transfected HepG2 cells when measured by RT-qPCR. Intracellular and extracellular viral RNA loads were quantified by RT-qPCR to investigate the effect of silencing the attachment receptor and clathrin-mediated endocytosis on dengue virus entry. Silenced cells showed a significant reduction of intracellular (92.4%) and extracellular viral RNA load (71.4%) compared to non-silenced cells. Flow cytometry analysis showed a marked reduction of infected cells (89.7%) in silenced HepG2 cells compared to non-silenced cells. Furthermore, the ability to generate infectious virions using the plaque assay was reduced 1.07 log in silenced HepG2 cells

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities
    corecore