41 research outputs found

    Expression and Functional Roles of Angiopoietin-2 in Skeletal Muscles

    Get PDF
    Angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2) are angiogenesis factors that modulate endothelial cell differentiation, survival and stability. Recent studies have suggested that skeletal muscle precursor cells constitutively express ANGPT1 and adhere to recombinant ANGPT1 and ANGPT2 proteins. It remains unclear whether or not they also express ANGPT2, or if ANGPT2 regulates the myogenesis program of muscle precursors. In this study, ANGPT2 regulatory factors and the effects of ANGPT2 on proliferation, migration, differentiation and survival were identified in cultured primary skeletal myoblasts. The cellular networks involved in the actions of ANGPT2 on skeletal muscle cells were also analyzed.Primary skeletal myoblasts were isolated from human and mouse muscles. Skeletal myoblast survival, proliferation, migration and differentiation were measured in-vitro in response to recombinant ANGPT2 protein and to enhanced ANGPT2 expression delivered with adenoviruses. Real-time PCR and ELISA measurements revealed the presence of constitutive ANGPT2 expression in these cells. This expression increased significantly during myoblast differentiation into myotubes. In human myoblasts, ANGPT2 expression was induced by H(2)O(2), but not by TNFα, IL1β or IL6. ANGPT2 significantly enhanced myoblast differentiation and survival, but had no influence on proliferation or migration. ANGPT2-induced survival was mediated through activation of the ERK1/2 and PI-3 kinase/AKT pathways. Microarray analysis revealed that ANGPT2 upregulates genes involved in the regulation of cell survival, protein synthesis, glucose uptake and free fatty oxidation.Skeletal muscle precursors constitutively express ANGPT2 and this expression is upregulated during differentiation into myotubes. Reactive oxygen species exert a strong stimulatory influence on muscle ANGPT2 expression while pro-inflammatory cytokines do not. ANGPT2 promotes skeletal myoblast survival and differentiation. These results suggest that muscle-derived ANGPT2 production may play a positive role in skeletal muscle fiber repair

    Skeletal Muscle NADPH Oxidase Is Increased and Triggers Stretch-Induced Damage in the mdx Mouse

    Get PDF
    Recent studies have shown that oxidative stress contributes to the pathogenesis of muscle damage in dystrophic (mdx) mice. In this study we have investigated the role of NADPH oxidase as a source of the oxidative stress in these mice. The NADPH oxidase subunits gp91phox, p67phox and rac 1 were increased 2–3 fold in tibilais anterior muscles from mdx mice compared to wild type. Importantly, this increase occurred in 19 day old mice, before the onset of muscle necrosis and inflammation, suggesting that NADPH oxidase is an important source of oxidative stress in mdx muscle. In muscles from 9 week old mdx mice, gp91phox and p67phox were increased 3–4 fold and NADPH oxidase superoxide production was 2 times greater than wild type. In single fibers from mdx muscle NADPH oxidase subunits were all located on or near the sarcolemma, except for p67phox,which was expressed in the cytosol. Pharmacological inhibition of NADPH oxidase significantly reduced the intracellular Ca2+ rise following stretched contractions in mdx single fibers, and also attenuated the loss of muscle force. These results suggest that NADPH oxidase is a major source of reactive oxygen species in dystrophic muscle and its enhanced activity has a stimulatory effect on stretch-induced Ca2+ entry, a key mechanism for muscle damage and functional impairment

    Disrupted autophagy undermines skeletal muscle adaptation and integrity

    Get PDF
    This review assesses the importance of proteostasis in skeletal muscle maintenance with a specific emphasis on autophagy. Skeletal muscle appears to be particularly vulnerable to genetic defects in basal and induced autophagy, indicating that autophagy is co-substantial to skeletal muscle maintenance and adaptation. We discuss emerging evidence that tension-induced protein unfolding may act as a direct link between mechanical stress and autophagic pathways. Mechanistic links between protein damage, autophagy and muscle hypertrophy, which is also induced by mechanical stress, are still poorly understood. However, some mouse models of muscle disease show ameliorated symptoms upon effective targeting of basal autophagy. These findings highlight the importance of autophagy as therapeutic target and suggest that elucidating connections between protein unfolding and mTOR-dependent or mTOR-independent hypertrophic responses is likely to reveal specific therapeutic windows for the treatment of muscle wasting disorders

    Angiogenesis-related factors in skeletal muscles of COPD patients: Roles of angiopoietin-2

    No full text
    The role of angiogenesis factors in skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD) is unknown. The first objective of this study was to assess various pro- and antiangiogenic factor and receptor expressions in the vastus lateralis muscles of control subjects and COPD patients. Preliminary inquiries revealed that angiopoietin-2 (ANGPT2) is overexpressed in limb muscles of COPD patients. ANGPT2 promotes skeletal satellite cell survival and differentiation. Factors that are involved in regulating muscle ANGPT2 production are unknown. The second objective of this study was to evaluate how oxidants and proinflammatory cytokines influence muscle-derived ANGPT2 expression. Angiogenic gene expressions in human vastus lateralis biopsies were quantified with low-density real-time PCR arrays. ANGPT2 mRNA expressions in cultured skeletal myoblasts were quantified in response to proinflammatory cytokine and H2O2 exposure. Ten proangiogenesis genes, including ANGPT2, were significantly upregulated in the vastus lateralis muscles of COPD patients. ANGPT2 mRNA levels correlated negatively with forced expiratory volume in 1 s and positively with muscle wasting. Immunoblotting confirmed that ANGPT2 protein levels were significantly greater in muscles of COPD patients compared with control subjects. ANGPT2 expression was induced by interferon-γ and -β and by hydrogen peroxide, but not by tumor necrosis factor. We conclude that upregulation of ANGPT2 expression in vastus lateralis muscles of COPD patients is likely due to oxidative stress and represents a positive adaptive response aimed at facilitating myogenesis and angiogenesis. Copyright © 2013 the American Physiological Society
    corecore