28 research outputs found

    Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation

    Get PDF
    BACKGROUND Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). METHODS Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10(-12) to 10(-6) M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK1/3, AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. RESULTS While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM/EGF conditions revealed that E2 and EGF dependent transcription have little overlap and rather operate in a parallel fashion. CONCLUSIONS Our data indicate that enhanced EGFR-driven signalling is sufficient to overrule the TAM- mediated inhibition of E2-driven cell proliferation. This may have profound implications for the anti-estrogen treatment of ER-positive breast cancers that have increased levels of EGFR.Toxicolog

    IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer

    Get PDF
    Antiestrogen resistance in estrogen receptor positive (ER+) breast cancer is associated with increased expression and activity of insulin-like growth factor 1 receptor (IGF1R). Here, a kinome siRNA screen has identified 10 regulators of IGF1R-mediated antiestrogen with clinical significance. These include the tamoxifen resistance suppressors BMPR1B, CDK10, CDK5, EIF2AK1, and MAP2K5, and the tamoxifen resistance inducers CHEK1, PAK2, RPS6KC1, TTK, and TXK. The p21-activated kinase 2, PAK2, is the strongest resistance inducer. Silencing of the tamoxifen resistance inducing genes, particularly PAK2, attenuates IGF1R-mediated resistance to tamoxifen and fulvestrant. High expression of PAK2 in ER+ metastatic breast cancer patients is correlated with unfavorable outcome after first-line tamoxifen monotherapy. Phospho-proteomics has defined PAK2 and the PAK-interacting exchange factors PIXα/β as downstream targets of IGF1R signaling, which are independent from PI3K/ATK and MAPK/ERK pathways. PAK2 and PIXα/β modulate IGF1R signaling-driven cell scattering. Targeting PIXα/β entirely mimics the effect of PAK2 silencing on antiestrogen re-sensitization. These data indicate PAK2/PIX as an effector pathway in IGF1R-mediated antiestrogen resistance

    Modelling greenhouse climate factors to constrain internal fruit rot (Fusarium spp.) in bell pepper

    No full text
    Internal fruit rot in bell pepper is an important fungal disease which results in mycelium growth and/or necrosis on the ovarium and fruit flesh. It is mainly caused by members of the Fusarium lactis species complex (FLASC) and emerged as a major threat for bell pepper production worldwide. Infection already starts during anthesis but the symptoms are only visible later on in the production chain. An accurate prediction of the disease incidence in the greenhouse based on environmental parameters is an important step towards a sustainable disease control. Based on a large dataset (2011-2016) a binomial, logistic regression model was developed. This model enables an accurate prediction of internal fruit rot occurrence based on simple and robust input parameters such as temperature and relative humidity during anthesis. Spore density was included as a simplified, practical parameter describing the presence or absence of internal fruit rot one week earlier. The obtained model was validated with an independent dataset of five different commercial bell pepper greenhouses. The chance of internal fruit rot infection increased with temperature and relative humidity. Once a greenhouse is infected, only lower temperatures can reduce future risks. However, the chance of the disease to occur remains very high. This prediction model offers a strong instrument for growers to optimize greenhouse climate conditions to restrain internal fruit rot incidence. In addition, the model can be used to apply accurate biological or chemical treatments to achieve a more sustainable greenhouse control. A guideline table for climate adjustment is presented

    Induction of plant defenses: the added value of zoophytophagous predators

    No full text
    Several biological control agents of the hemipteran insect families Miridae, Anthocoridae and Pentatomidae, as well as mites of the family Phytoseiidae are known as zoophytophagous predators, a subset of omnivores, which are primarily predaceous but also feed on plants. It has been recently demonstrated that zoophytophagous predators are capable of inducing defenses in plants through their phytophagy. Despite the vast fundamental knowledge on plant defense mechanisms in response to herbivores, our understanding of defense induction by zoophytophagous predators and applied implications is relatively poor. In this review, we present the physiological basis of the defense mechanisms that these predators activate in plants. Current knowledge on zoophytophagous predator-induced plant defenses is summarized by groups and species for the predators of economic importance. Within each group, feeding habits and the effects of their induced-plant defenses on pests and natural enemies are detailed. Also, the ecological implications of how the induction of defenses mediated by zoophytophagous predators can interact with other plant interactors such as beneficial soil microorganisms and plant viruses are addressed. Based on the above, we propose three approaches to exploit zoophytophagous predator-induced defenses in crop protection and to guide future research. These include using predators as vaccination agents, employing biotechnological approaches, as well as applying elicitors to elicit/mimic predator-induced defenses.This work was partly supported by the Spanish Ministry of Science and Innovation through the projects RTA2017-00073-00-00 and PID2020-113234RR-I00. MLP was supported by the Onassis Foundation under the Special Grant and Support Program for Scholars’ Association Members (Grant No. R ZJ 003-2/2019–2020). GM was supported by the Dutch topsector project KV 1509-020. SB is an employee of Koppert Spain, a private company that markets benefcial arthropods. RM works for Biobest Group NV, a private company that markets benefcial arthropods

    One clutch or two clutches? : Fitness correlates of coexisting alternative female life-histories in the European earwig

    Get PDF
    Whether to reproduce once or multiple times (semelparity vs. iteroparity) is a major life-history decision that organisms have to take. Mode of parity is usually considered a species characteristic. However, recent models suggested that population properties or condition-dependent fitness payoffs could help to maintain both life-history tactics within populations. In arthropods, semelparity was also hypothesised to be a critical pre-adaptation for the evolution of maternal care, semelparous females being predicted to provide more care due to the absence of costs on future reproduction. The aim of this study was to characterize potential fitness payoffs and levels of maternal care in semel- and itero-parous females of the European earwig Forficula auricularia. Based on 15 traits measured in 494 females and their nymphs, our results revealed that iteroparous females laid their first clutch earlier, had more eggs in their first clutch, gained more weight during the 2 weeks following hatching of the first clutch, but produced eggs that developed more slowly than semelparous females. Among iteroparous females, the sizes of first and second clutches were significantly and positively correlated, indicating no investment trade-off between reproductive events. Iteroparous females also provided more food than semelparous ones, a result contrasting with predictions that iteroparity is incompatible with the evolution of maternal care. Finally, a controlled breeding experiment reported full mating compatibility among offspring from females of the two modes of parity, confirming that both types of females belong to one single species. Overall, these results indicate that alternative modes of parity represent coexisting life-history tactics that are likely to be condition-dependent and associated with offspring development and specific levels of maternal care in earwigs

    2D and 3D assessment of neuropathology in rat brain after prenatal exposure to methylazoxymethanol, a model for developmental neurotoxicty

    No full text
    To evaluate the ability of a tiered quantitative morphological approach to reveal developmental neurotoxicity, morphometric parameters were measured in the offspring of rats treated with methylazoxymethanol (MAM) during days 13-15 of pregnancy. Treatment was aimed at inhibiting the proliferation phase of hippocampal neurons while leaving cerebellar neurons unaffected. 2D and 3D assessment of brain morphology combined with straightforward measurement of brain size, weight and volume, and the usefulness of estimation of total neuron numbers were studied. Each tier indicated major effects of MAM, from macroscopic effects in the cerebrum (first tier) to a considerable loss of neurons in the hippocampal CA1 pyramidal layer (third tier). The cerebellum and the number of cerebellar granular neurons were not changed. Along with each step of the proposed tiered approach (brain size → linear morphometry → stereology), the discriminative strength of the endpoints, and thus the probability to pinpoint the extent and location of developmental brain lesions increased. © 2005 Elsevier Inc. All rights reserved

    IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer

    Get PDF
    Antiestrogen resistance in estrogen receptor positive (ER+) breast cancer is associated with increased expression and activity of insulin-like growth factor 1 receptor (IGF1R). Here, a kinome siRNA screen has identified 10 regulators of IGF1R-mediated antiestrogen with clinical significance. These include the tamoxifen resistance suppressors BMPR1B, CDK10, CDK5, EIF2AK1, and MAP2K5, and the tamoxifen resistance inducers CHEK1, PAK2, RPS6KC1, TTK, and TXK. The p21-activated kinase 2, PAK2, is the strongest resistance inducer. Silencing of the tamoxifen resistance inducing genes, particularly PAK2, attenuates IGF1R-mediated resistance to tamoxifen and fulvestrant. High expression of PAK2 in ER+ metastatic breast cancer patients is correlated with unfavorable outcome after first-line tamoxifen monotherapy. Phospho-proteomics has defined PAK2 and the PAK-interacting exchange factors PIXα/β as downstream targets of IGF1R signaling, which are independent from PI3K/ATK and MAPK/ERK pathways. PAK2 and PIXα/β modulate IGF1R signaling-driven cell scattering. Targeting PIXα/β entirely mimics the effect of PAK2 silencing on antiestrogen re-sensitization. These data indicate PAK2/PIX as an effector pathway in IGF1R-mediated antiestrogen resistance.Toxicolog
    corecore