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Epidermal growth factor receptor signalling in
human breast cancer cells operates parallel to
estrogen receptor α signalling and results in
tamoxifen insensitive proliferation
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Abstract

Background: Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast
cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical
data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and
anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic
expression of epidermal growth factor receptor (MCF7-EGFR).

Methods: Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF)
or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen
(TAM) or fulvestrant at 10−12 to 10−6 M. Cells were lysed at different time points to determine the phosphorylation status
of EGFR, MAPK1/3, AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs.
Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates.

Results: While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR
cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation
of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation
thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however
did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven
proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated
by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway,
since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM/EGF
conditions revealed that E2 and EGF dependent transcription have little overlap and rather operate in a parallel fashion.

Conclusions: Our data indicate that enhanced EGFR-driven signalling is sufficient to overrule the TAM- mediated
inhibition of E2-driven cell proliferation. This may have profound implications for the anti-estrogen treatment of
ER-positive breast cancers that have increased levels of EGFR.
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Background
Breast cancer is the most common cancer among women
worldwide. Despite the improvement in treatment, therapy
resistance remains a major problem in the clinic. Endocrine
therapy has become the most important treatment option
for women with estrogen receptor (ER) α -positive breast
cancer, which is approximately 70% of all breast tumours.
The ERα − antagonist tamoxifen is commonly used
with these ERα-positive breast cancers. Unfortunately,
around 40% of all ERα-positive patients do not respond to
tamoxifen treatment (de novo resistance) [1]. Furthermore,
most patients that initially respond to tamoxifen treatment
eventually develop resistance (acquired resistance) [2,3].
Clinical data indicate that tamoxifen resistant breast

cancers often have an increased expression of the receptor
tyrosine kinase (RTK) epidermal growth factor (EGF)
receptor (EGFR/ERBB1) and its family member ERBB2
[1,4,5]. Also increased activation of their downstream
target mitogen activated protein kinase (MAPK) leading
to increased phosphorylation of the estrogen receptor on
serine 118 or serine 167, have been found [6-8]. Because
MAPK can be activated downstream from EGFR and/or
ERBB2 and may phosphorylate the ERα at serine 118,
together these observations suggest that the EGFR/
ERBB2 signalling pathways might play a role in tamoxifen
resistance.
The above clinical findings are confirmed by several

in vitro studies which show that continuous culturing of
the human breast cancer cell line MCF7 in the presence
of the anti- estrogen tamoxifen or fulvestrant increases
EGFR and ERBB2 expression and the activation of
downstream signalling kinases (e.g. MAPK) [9-11]. This
is in contrast to another study in which no change in
the EGFR/ERBB2 signalling pathway upon long term
tamoxifen treatment is observed [12]. Nevertheless, in
the latter study an increased MAPK phosphorylation upon
tamoxifen stimulation and an enhanced ERα-EGFR
interaction were observed [12]. In all studies the
antagonistic effect of tamoxifen could be restored by
co- treatment with tyrosine kinase inhibitors against
either the EGFR or against MAPK and PI3K/Akt
[9-13]. Even more evidence for a role of EGFR and
ERBB2 in tamoxifen resistance comes from in vivo
experiments in mice. Masserweh et al. showed that
EGFR and ERBB2 expression was markedly increased
when MCF-7 xenograft tumours became tamoxifen resist-
ant compared to control estrogen-treated tumours [14].
Together these observations suggest that the EGFR/
ERBB2 signalling pathways might play a role in tamoxifen
resistance.
Several in vitro studies show down regulation of ERα

due to signalling by highly over expressed EGFR/ERBB2
pathway components [1,15-17], resulting in de novo or
acquired tamoxifen resistance. Also in clinical studies, an
inverse correlation between EGFR and ERα expression in
tamoxifen resistant patients has been reported [5,6,18-20].
However, expression of both ERα and EGFR was observed
in at least 50% of the patients [20]. Furthermore, in a meta
analysis involving >5000 patients, EGFR positivity was
observed in 4-51% (mean 29%) of ERα-positive tumors
and in 29-91% (mean 59%) of ERα-negative tumors [21].
No correlations with tamoxifen were reported. In addition,
several in vitro studies showed no down regulation of the
ERα in cell lines that were long-term cultured in the
presence of tamoxifen [9,10,22]. Thus, it appears that high
expression of EGFR may down regulate ERα, while more
moderate levels of EGFR are found in ERα-positive
tumors. In this paper we focus on the latter situation
and have investigated the mechanisms responsible for
anti-estrogen resistance in this situation.
Despite all research done, the mechanism by which over

expression of receptor tyrosine kinases induce anti-estrogen
resistance is still unclear. For instance, some studies suggest
that increased EGFR signalling itself induces anti-estrogen
resistance [23-26], while in contrast others suggest that
increased crosstalk between ERα and RTKs might be
responsible [12,14,22,27-30]. Furthermore, other data
also suggest a role for ERα phosphorylation by RTK
downstream signalling, in anti-estrogen resistance
[9,31-34]. The diversity of the explanations for the effect
of RTKs on tamoxifen resistance may suggest a very
complex mechanism behind the anti-estrogen resistance.
Typically, these above mentioned studies are performed in
anti-estrogen resistant breast tumour cell models that are
created by long term culturing of human breast cancer
cells in the presence of different anti- estrogens. This
allows adaptation of the cells to reduced pro-mitogenic
signals and may result in selection of cells with increased
levels and/or activation of EGFR/ERBB2 [9,10,22,26].
However, other cellular programs may have changed
in these anti-estrogen resistant cells as well which
also may contribute to acquired tamoxifen resistance.
Therefore, studies using isolated EGFR expression are
required.
In this study we created human breast cancer MCF7

cells that ectopically express human EGFR (MCF7-EGFR)
with a 3-fold induction compared to wild type MCF7 cells,
allowing the study of EGFR exclusively in the context of
anti-estrogen activity of tamoxifen. Importantly, in these
cells EGFR activity is low under basal conditions, but
is greatly enhanced by EGF treatment. This enhanced
signalling leads to loss of anti-proliferative effect of
tamoxifen. In contrast, classic genomic ERα signalling
remains anti-estrogen sensitive. Genome-wide tran-
scriptomic analysis showed the existence of specific
E2 and EGF induced transcriptional programs that do
not significantly overlap and operate in a parallel
fashion.
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Our data suggest that ER-positive breast cancer with a
moderate EGFR expression would also be intrinsic re-
sistant to anti-estrogens. First line combined therapy of
ER/EGFR positive breast cancer with EGFR inhibitors
and tamoxifen would therefore be more effective.

Methods
Materials
Antibodies against ERα (sc-543), and EGFR (sc-03) were
from Santa Cruz Biotechnology (Heidelberg, Germany);
antibodies against phosphorylated Akt (9271S), mitogen
activated protein kinase 42–44 (MAPK) and phosphorylated
MAPK (9101 and 137 F5), and phosphorylated EGFR
(4407) were from Cell Signalling Technologies (Leiden, The
Netherlands); antibody for Akt was a kind gift from P.
Coffer (UMC, Utrecht, The Netherlands). For analyzing
phosphorylated proteins the Western-Star immunodetection
kit (Tropix kit) from Applied Biossytems (Foster City, CA,
USA) was used. TAM, fulvestrant, E2, EGF, and the protein
dye sulforhodamin B (SRB) were from Sigma Aldrich (St
Louis, MO, USA). Mitogen-activated kinase kinase (MEK)
inhibitor U0126 (V-112A) was from Promega (Leiden, The
Netherlands); Phosphoinositide 3-kinase (PI3K) inhibitor
BEZ235 (S1009) was from Selleck (Houston, TX, USA).

Cell culture
All cells were cultured in RPMI 1640 medium (Gibco, Life
Technologies, Grand Island, NY, USA) supplemented with
10% fetal bovine serum (FBS) and penicillin/streptomycin
(25 Units/mL each) at 37°C and 5% carbon dioxide. For es-
trogen deprivation, cells were cultured for 48 hrs in starva-
tion medium consisting of phenol red free RPMI 1640
medium (Gibco) supplemented with 5% charcoal dextran
treated fetal bovine serum (CDFBS) (HyClone, Thermo Sci-
entific, Waltham, MA, USA) and penicillin/streptomycin.

Establishment of MCF EGFR cells
Retroviral transduction of MCF7 cells with a pMSCV-
blast-hEGFR retroviral vector, kindly provided by Dr. E.
Danen (Leiden Academic Centre for Drug Research, The
Netherlands) [35], followed by blasticidin selection
(12.5 μg/ml) was used to generate MCF7-hEGFR cells.
After 7 passages of continuous selection with blasticidin,
EGFR transduced cells were harvested by fluorescence-
activated cell sorting (FACS). Cells were maintained at
10 μg/ml blasticidin.

Proliferation assay
Parental MCF7 and MCF7-EGFR cells were plated in
96- wells plates (Costar, Fisher Scientific, Waltham, MA,
USA) at a density of 10.000 cells/well and allowed to at-
tach overnight and maintained in starvation medium
for 48 hrs. Subsequently, growth factors were added
(E2, EGF, TAM, etc.) and cells were allowed to
proliferate for 5 days. The cells were fixed and stained
using the colorimetric sulforhodamin B (SRB) assay [36].
In short, cells were fixed with trichloroacetic acid at 4°C
for 1 hour, washed five times with tap water and air-dried.
Next, the cells were stained with SRB in 1% acetic acid at
room temperature for 30 min. Plates were washed five
times with 1% acetic acid and air-dried overnight.
Bound SRB was solubilised with 100 μL 10 mM aque-
ous unbuffered Tris solution (pH > 10) and absorbance
was measured at 540 nm. All data represent the average ±
SEM of three independent experiments each performed
with triplicate wells.
In a control experiment (Additional file 1: Figure S1),

cell proliferation was determined by staining cellular DNA
in 96-well tissue cultures plates with bisbenzimidazole
(Hoechst 33258) as described [37]. Briefly, the plates were
emptied of media and stored frozen. Subsequently 100 μL
distilled water was added to each well and frozen again.
Thereafter, they were stained with Hoechst 33258 in
5 mM Tris, 0.5 mM EDTA, 1 M NaCl pH 7.4. The assay
yielded a linear standard curve for DNA fluorescence ver-
sus cell number in a range appropriate for our experiment.

Immunoblotting
Estrogen depleted parental MCF7 and MCF7-EGFR cells
plated in 60-mm dishes were treated with different stimuli
after a 2 hr serum starvation period. After stimulation, cells
were placed on ice and washed twice with ice-cold PBS and
once with ice cold TSE (10 mM Tris, 250 mM Sucrose, and
1 mM EGTA). Next, cells were lysed in 60 μL TSE plus
inhibitors (1 mM DTT, 10 μg/mL leupeptin, 10 μg/mL
aprotinin, 1 mM vanadate, 50 mM sodium fluoride, 1 mM
PMSF) and lysates were placed in cold 1 mL eppendorf
tubes. After pulse sonication samples were stored at −20°C
until electrophoresis. Proteins were separated by electro-
phoresis (7.5% acrylamide gel) followed by transfer to PVDF
membrane (Millipore, Billerica, MA, USA). After blocking
with 5% bovine serum albumin (BSA) (Invitrogen, Grand
Island, NY, USA) and primary and secondary antibody
staining, protein bands were visualized by scanning the
membrane on a Typhoon 9400 (GE Healthcare, Fairfield,
CT, USA).

Immunofluorescent microscopy
Parental MCF7 and MCF7-EGFR cells plated on glass cov-
erslips were fixed with 4% formaldehyde for 10 min at
room temperature, washed three times with PBS and then
blocked with TBP (10% Triton, 1% BSA in PBS pH 7.4) for
1 hour at room temperature. Primary antibodies diluted in
TBP were added for incubation overnight at 4°C. There-
after, secondary antibody conjugated with Alexa488 was
added together with Hoechst33258 (2 μg/ml) for 30 min
at room temperature in the dark and post-fixated with 4%
formaldehyde for 5 min. After washing with TBP and PBS,
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coverslips were mounted on a glass slide using Aqua-
Poly/Mount (Polysciences Inc., Warrington, PA, USA).
Small interfering RNA (siRNA)-based knockdown
Knockdown of target genes was established by a reverse
transfection using smartpool siRNAs according to the
manufacture’s protocol (Dharmacon, Pittsburgh, PA,
USA) using Dharmafect 4 reagent and with final siRNA
concentration of 50 nM.
Luciferase reporter assays
Parental MCF7 and MCF7-EGFR cells were plated at a
density of 40.000 cells/well in a 48- wells plate in culture
medium without antibiotics. The next day cells were trans-
fected with 0.16 μg ERE-tk-luciferase plasmid (kind gift of R.
Michalides, Netherlands Cancer Institute, Amsterdam)
using Lipofectamine Plus reagents (Invitrogen) according to
manufacturer’s protocol. After 3 hours incubation medium
was replaced with starvation medium. Cells were cultured
for 48 hrs before treatment with different compounds. The
medium was discarded after 12 hrs and cells were washed
once with PBS and then lysed with 1x passive lysis buffer,
from the Dual-Luciferase kit (Promega, Madison, WI, USA).
Luciferase activity was measured using the Dual- Luciferase
kit (Promega, Madison, WI, USA) on a luminometer
(CentroXS3 LB960, Berthold Technologies, Bad Wildbad
Germany).
Transcriptomics analysis
For microarray analysis of gene expression, MCF7-EGFR
cells were seeded at 60% confluence in 6-cm plates and
subjected to three-day starvation in 5% charcoal/dex-
tran- stripped fetal bovine serum medium prior to treat-
ments with TAM (10 μM), E2 (10 nM) and EGF
(100 ng/mL) in triplicate. After 6 hours, total RNA was
extracted using a RNA isolation kit (Ambion, Inc., Aus-
tin, TX, USA). Affymetrix 3′ IVT Express Kit (Affymetrix,
Santa Clara, CA, USA) was used to synthesize biotin-
labeled cRNA, and this was hybridized to a Affymetrix HG-
U133 PM Array plate. Raw expression data were obtained
by probe summarization and background correction
according to the robust multiarray averaging method
[38]. Median normalization of raw expression data and
identification of differentially expressed genes using a
random variance t-test was performed using BRB-
ArrayTools [39] version 4.1.0 Beta 2 Release (developed
by Dr. Richard Simon and BRBArrayTools Develop-
ment Team members). Corrections for multiple testing
were made by calculating the false discovery rates ac-
cording to Benjamini & Hochberg [40]. Affymetrix pro-
besets were annotated with Netaffx Annotation build
30 (dated 08-20-2010).
Statistical analysis
Student’s t-test was used to determine if there was a
significant difference between two conditions/treatments
(p < 0.05). Significant differences are indicated in the figures.

Results
EGFR over expression in MCF7 cells enhances
downstream MAPK and Akt signalling
To investigate the role of EGFR on anti-estrogen resistance,
we established ectopic human EGFR expression in human
MCF7 breast cancer cells. Immunofluorescent staining of
these MCF7-EGFR cells showed an intense plasma-
membrane EGFR staining (Figure 1A) in contrast to the
parental MCF7 cells. Furthermore, FACS analysis also
demonstrated a clear increase of EGFR expression in the
established MCF7-EGFR cell line (Figure 1B). Next, we
determined the functionality of ectopically expressed
EGFR by analyzing the downstream signalling upon EGF
stimulation. Cells were serum starved for 2 hours prior to
EGF stimulation (100 ng/mL). The MCF7-EGFR cells
showed a long lasting (>120 min) increased phosphoryl-
ation of the EGFR upon EGF stimulation (Figure 1C). This
EGFR activation was associated with enhanced activation
of the downstream kinases MAPK1/3 and Akt (Figure 1C).
Importantly, no difference in ERα protein expression
between the two cell lines was observed at 2 hr (Figure 1C),
2 days and 5 days after continuous EGF stimulation
(Additional file 2: Figure S2), indicating that this level of
EGFR expression does not affect ERα levels.

MCF7-EGFR proliferation can be induced by both
estrogen and EGF
Both MCF7 parental and MCF7-EGFR cells showed a clear
estrogen-dependent increase in proliferation (Figure 2A).
However, stimulation with EGF induced proliferation of
only the MCF7-EGFR cells, which was almost the same as
E2-induced proliferation (Figure 2A). Furthermore, the
E2- induced proliferation did not increase by additional
EGF stimulation (Figure 2A), indicating lack of synergy
between EGF and E2 at the concentrations used.
We also investigated non-genomic effects of ERα

signalling by analyzing phosphorylation of MAPK1/3

after E2 stimulation (10 nM) in estrogen (48 hrs) and
serum (2 hrs) starved cells. The parental MCF7 and
MCF7-EGFR cells showed a small increase (1.5 and 2
fold respectively) in MAPK1/3 activation 30 seconds after
E2 stimulation (Figure 2B). However, this was much
smaller than the 5 and 35 fold increase by EGF
stimulation. Even when the estrogen stimulation was
prolonged, MAPK1/3 activation did not further in-
crease (data not shown). These results may suggest
that non-genomic effects of ERα in relation to
MAPK signalling might not be very important in
MCF7-EGFR cells.



Figure 1 Retroviral-induced EGFR over expression in MCF7 human breast cancer cells enhances downstream signalling. EGFR expression
was determined in parental MCF7 and MCF7-EGFR cells by immunofluorescence (A) and FACS analysis (B). To determine downstream EGFR signalling,
starved MCF7 parental and MCF7-EGFR cells were stimulated with EGF (100 ng/mL). Cell lysates were collected and analyzed by western blot for the
phosphorylation status of EGFR, MAPK1/3 and Akt as well as the expression of ERα (C).
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Ectopic EGFR expression provides resistance to the
anti-estrogen tamoxifen
Next, we determined the effect of EGFR over expression
on the sensitivity towards the anti-estrogen tamoxifen.
Cells were estrogen-depleted for 48 hrs and then
exposed to a concentration series of TAM plus a fixed con-
centration E2 (0.1 nM) with or without EGF (100 ng/mL).
After 5 days, proliferation was determined. As expected,
TAM treatment resulted in a dose-dependent inhibition of
proliferation of parental MCF7 cells (Figure 3A). The
MCF7-EGFR cells without EGF showed a similar dose-
dependent inhibition of proliferation upon TAM treatment.
However, when the EGFR is activated by EGF exposure,
the MCF7-EGFR cells were no longer sensitive to
TAM. As the SRB assay that we used for determining
cell proliferation is based on measuring total cell pro-
teins, any change in cellular protein content by EGF
exposure may have influenced our results. Therefore,
we performed an independent experiment where we
determined cell proliferation by measuring total cellu-
lar DNA (see Methods). The results are in agreement
with the SRB assay and confirm that MCF7-EGFR
cells after EGF exposure are no longer sensitive to
TAM (Additional file 1: Figure S1).
Subsequently, we tested whether the EGF-mediated
protection against TAM was dependent on the EGFR sig-
nalling. For this purpose we performed siRNA-based knock-
down of EGFR in both the MCF7 and MCF7-EGFR cells.
After a starvation period of 48 hrs, cells were stimulated
with either E2 (0.1 nM), EGF (100 ng/mL), E2 and EGF, or
E2 plus EGF and TAM (100 nM). Western blot analysis
showed a 60% knock down of EGFR compared to control
GFP siRNA, which led to decreased activation of the down-
stream kinases MAPK1/3 and Akt upon EGF stimulation in
both MCF7 parental and MCF7-EGFR cells (Figure 4A).
Furthermore, as expected, EGF-induced proliferation of
MCF7-EGFR cells decreased significantly in cells with a
knock down of EGFR compared to cells with a control
siRNA (Figure 4B). Knock down of EGFR in the MCF7-
EGFR cells resulted in almost complete re- sensitization
towards TAM treatment (Figure 4B). This indicates that the
EGFR signalling pathway is dominant over the TAM-
induced inhibition of estrogen-driven proliferation.

MCF- EGFR cells show resistance to the anti-estrogen
fulvestrant
Next, we determined the sensitivity of the MCF7-EGFR
cells towards another clinically relevant anti-estrogen,



Figure 2 EGFR over expression does not influence estrogen-dependent proliferation. To investigate the proliferation induced by either
estrogen or EGF both, parental MCF7 and MCF7-EGFR cells, were cultured in phenol red free medium with 5% charcoal treated serum for
48 hours, followed by an exposure to 0.1 nM E2, 100 ng/mL EGF or a combined exposure. The control cells were exposed to DMSO only. Cells
were left to proliferate for 5 days and then fixed with 50% trichloroacid (TCA). Fixed cells were stained with sulforhodamin B, which absorption
was measured at 540 nm (A). Graphs represents the average relative proliferation ± SEM of three independent experiments, * indicates significant
difference of p < 0.05. To determine the role for the fast non-genomic effects of ERα, starved MCF7 parental and MCF7-EGFR cells were exposed to 10 nM
E2 for the indicated times before lysates were collected and analyzed by western blot for the phosphorylation status of MAPK1/3 (B). – and + indicate
negative control (DMSO) and positive control (EGF, 100 ng/mL).
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namely fulvestrant. In contrast to tamoxifen, fulvestrant
binds, blocks and degrades the ERα [41]. Therefore, all
ERα-dependent pathways are expected to be inhibited
by fulvestrant. Cells were estrogen-depleted for
48 hrs and then exposed to a concentration series of
fulvestrant plus a fixed concentration E2 (0.1 nM)
with or without EGF (100 ng/mL). The MCF7 paren-
tal cells showed an almost complete, dose-dependent
inhibition of proliferation by fulvestrant that was
independent of EGF treatment (Figure 3B). This is similar
to the effect of TAM.
Treatment of the MCF7-EGFR cells with fulvestrant

resulted in a dose-dependent inhibition of proliferation
as well (Figure 3B). However, co-treatment of these cells
with EGF decreased the inhibitory effect of fulvestrant,
similar to the effect on TAM.
Knock down of ERα blocks E2- but not EGF-induced
proliferation
To determine whether EGF-induced EGFR signalling
resulting in tamoxifen resistance involves ERα or not,
we introduced a siRNA targeting ERα in both parental
MCF7 and MCF7-EGFR cells, which resulted in 70% ERα
knock down (Figure 4C). This ERα knockdown did not
decrease the activation of MAPK1/3 or Akt upon EGF
stimulation (Figure 4C). However, estrogen-induced
proliferation was greatly reduced in ERα knockdown
cells compared to control GFP siRNA (Figure 4D),
although some E2-driven proliferation was still observed,
possibly related to residual ERα protein levels due to no
full ERα knockdown. EGF-induced proliferation was not
significantly affected by ERα knockdown in neither
MCF7 parental nor MCF7-EGFR cells. These results



Figure 3 EGFR over expression induces tamoxifen and fulvestrant resistance. Parental MCF7 and MCF7-EGFR cells were estrogen starved
48 hours prior to a 5 day proliferation period in the presence of 0.1 nM E2 with a concentration series TAM (A) or fulvestrant (B), with or without
100 ng/mL EGF. Afterwards, cells were fixed with 50% TCA and stained with sulforhodamin B, which absorbance was measured at 540 nm. Graphs
represent the average ± SEM of three independent experiments.

Moerkens et al. BMC Cancer 2014, 14:283 Page 7 of 15
http://www.biomedcentral.com/1471-2407/14/283
indicate that EGFR signalling pathway can maintain
proliferation in the absence of ERα in MCF7-EGFR cells.

MEK/MAPK pathway is not responsible for EGFR-mediated
proliferation and tamoxifen “resistance” of MCF7-EGFR cells
To determine the downstream signalling that defines the
EGFR-mediated proliferation and resistance to tamoxifen
we treated our cells with an inhibitor of MEK1/2 (U0126,
10 μM) and an inhibitor of PI3K (BEZ235, 1 μM) and
measured the proliferation of MCF7 parental and
MCF7-EGFR cells treated with E2 (0.1 nM), EGF
(100 ng/mL), E2 and EGF, or E2 plus EGF and TAM
(100 nM). Western blot analysis showed reduced
MAPK1/3 activation upon U0126 treatment and reduced
Akt activation upon BEZ235 treatment in both parental
MCF7 and MCF7-EGFR cells (Figure 5A). Treatment with
the MEK1/2 inhibitor resulted in decreased proliferation of
serum starved MCF7 parental as well as MCF7-EGFR
cells compared to control (Figure 5B). Similarly, prolifera-
tion after E2, EGF, E2 + EGF, and E2 + EGF +TAM stimu-
lation was decreased as well compared to control
(Figure 5B). The decrease in proliferation, however, was
comparable to the decrease in proliferation in the
starvation conditions. The MEK1/2 inhibitor did not change
the effect of TAM on proliferation of parental MCF7
and MCF7-EGFR cells in the presence of E2 and EGF
(Figure 5B). These results suggest that the MEK/MAPK
pathway is not responsible for the apparent tamoxifen
resistance in MCF7-EGFR cells. Treatment with the PI3K
inhibitor BEZ235 almost completely blocked proliferation
induced by E2, EGF, or by a combination of the two
(Figure 5C) in parental MCF7 and MCF7-EGFR cells.
BEZ235 also has an effect on starved control cells, which is
likely related to remaining background PI3K signalling
activity mediated by cell adhesion signalling and/or
autocrine responses. Yet, altogether our data indicate that
tamoxifen resistant cell proliferation mediated by the
conditional EGFR- signalling may be dependent on the
PI3K/Akt pathway but not the MEK/MAPK pathway, since
strong Akt activation is observed after EGF stimulation of
MCF7-EGFR cells (Figure 1C) and a MEK inhibitor
(U0126), did not block the proliferation.

Overexpression of EGFR does not overcome tamoxifen
inhibition on transcriptional level
Tamoxifen resistance may be related to altered regulation
of ERα-mediated transcriptional activity [14,22]. Therefore,
we investigated the effect of ectopic EGFR expression and



Figure 4 Knock down of EGFR reverses tamoxifen resistance of MCF7-EGFR cells and is ERα independent. EGFR (A) and ERα (C) knockdown in
MCF7 parental and MCF7-EGFR cells was established using siRNA. Knock down efficiency and the effect of EGFR knock down on phosphorylation status
of MAPK1/3 and Akt after 30 min EGF (100 ng/mL) exposure was analysed on western blot. GFP siRNA was used as control. (A, C) After
48 hours starvation knock down cells were exposed to 0.1 nM E2 plus 100 nM TAM and 100 ng/mL EGF. Proliferation was measured after
5 days using sulforhodamin B absorbance at 540 nm (B, D). Graphs represent the average ± SEM of three (A, B) or four (C, D) individual experiments,
* indicates significantly different at p < 0.05; # indicates significantly different at p < 0.01.
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tamoxifen on ERα transcription. Parental MCF7 and
MCF7-EGFR cells were transiently transfected with
an ERE-tk-luciferase construct. Estrogen induced
ERE-luciferase activity in both parental MCF7 and
MCF7-EGFR cells 4-fold which could be inhibited by
tamoxifen (Additional file 3: Figure S3). Importantly,
TAM inhibited E2 induced ERE-luciferase activity also
after EGF stimulation in both parental MCF7 and



Figure 5 MCF7-EGFR tamoxifen resistance involves PI3K/Akt pathway. Parental MCF7 and MCF7-EGFR cells were starved for 48 hrs before
pre-treatment with either the MEK inhibitor U0126 (10 μM) or the PI3K inhibitor BEZ235 (1 μM) for 30 min. The effect of inhibition on EGF-induced
activation of MAPK1/3 and Akt was analyzed on western blot (A). Following U0126 and BEZ235 pre-treatment cells were exposed to 0.1 nM
E2, 100 nM TAM and 100 ng/mL EGF. Proliferation was measured after 5 days using sulforhodamin B absorbance at 540 nm (B, C). Graphs represent
the average ± SEM of three independent experiments, * indicates significant difference of p < 0.05, # indicates significant difference of p < 0.01.
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MCF7-EGFR cells. Thus, over expression of EGFR does
not block the inhibitory effect of tamoxifen on ERα
transcription activation by E2, as opposed to the effect on
proliferation. Furthermore, EGF stimulation itself did not
induce ERE-luciferase expression in MCF7 parental nor
MCF7-EGFR cells (Additional file 3: Figure S3 A and B)
indicating no important cross-talk between ERα and
EGFR signalling pathways at the transcriptional level.
Ensuing microarray gene expression analysis supported
these reporter assay results (see below). In addition, we
also measured ERE-luciferase expression at various times
(2–12 hrs) after stimulation of parental MCF7 and
MCF7 EGFR cells by EGF, with and without TAM,
and these experiments also showed only little effect
of EGFR signalling on transcription compared to E2,
and no reinforcement of TAM on EGFR signalling
(Additional file 4: Figure S4).

Overexpression of EGFR does not induce agonistic effects
of tamoxifen
It has been suggested that ERα phosphorylation by RTK
downstream signalling, may alter it in such a way
that tamoxifen functions as an agonst [9,33,42,43].
We therefore investigated whether enhanced EGFR
signalling in our MCF7-EGFR cells led to agonistic
effects of tamoxifen on MCF7 and MCF7-EGFR cell
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proliferation and transcription. We observed no agonistic
effects of TAM after EGF stimulation on cell proliferation
(Additional file 5: Figure S5), or luciferase expression
(Additional file 4: Figure S4).

Microarray gene expression analysis of E2 and EGF
induced genes
Transcription analysis was performed to investigate the
degree of similarity of E2 and EGF activated signalling
pathways. E2 increased the expression of 897 genes by
1.5 fold in MCF7- EGFR cells after 6 hr, while a similar
number of genes was 1.5 fold lower expressed compared
to controls (Figure 6A). The number of genes induced
or decreased by EGF was slightly higher (1300). As
expected, TAM greatly reduced the number of genes 1.5
fold up- or down-regulated by E2. TAM hardly affected
the number of EGF regulated genes. TAM, however, had
a significant effect on the number of genes regulated by
combined E2 + EGF exposure due to down regulation of
E2 responsive genes (Figure 6B).
In order to further characterize the inhibitory effect of

TAM on E2 regulated genes, we calculated the percentage
of inhibition by TAM for each gene. The inhibition by
TAM of E2 induced genes was large: the expression of
more than 65% of E2 up regulated genes was inhibited by
TAM by >50% (Figure 6B). Interestingly, the effect of
TAM on genes up regulated by E2 under the condition of
combined E2 + EGF exposure (60% inhibition >50%) was
almost as big as with exposure to E2 alone. This indicates
that the inhibitory effect of TAM is only slightly affected
by exposure of the cells to EGF.
In general, similar observations were made for the

inhibitory effect of TAM on E2 down regulated genes
as for E2 up regulated genes (Figure 6C).
Further analysis of the E2 and EGF regulated genes

showed that the identity of E2 and EGF induced genes
are different: most genes up regulated by E2 (80%) are not
induced by EGF (Figure 7). Many known E2 regulated
genes such as TFF1, PGR, GREB1 and MYC belong to this
class. Similarly, the majority of EGF induced genes (86%)
is not induced by E2. However, there is number of genes
(170) that is up regulated >1.5 fold by both E2 and EGF,
and for part of these (68), there is a synergistic effect of E2
and EGF (Additional file 6: Table S1). Analysis with
Metacore software (Genego, St. Joseph, MI, USA)
suggests that the most important transcription factors for
these genes are AR, c-JUN, c-MYC, EGR1, ESR1,
HIF1A, p53 and SP1 (Additional file 6: Table S1),
which is consistent with the cell proliferation pathways
activated by E2 and EGF (see below).
Furthermore, there is a relatively large number of

genes (609) induced by combined E2 + EGF exposure
that is not induced by E2 or EGF alone. This most
likely is also due to a synergistic effect of E2 and
EGF because 60% of these genes are already induced
by E2 or EGF alone but just below the threshold of
1.5 fold (between 1.2 and 1.5 fold).
Conversely, there is also an antagonistic effect because

some of the E2 up regulated genes are down regulated
by EGF, and visa versa (Additional file 7: Table S2). In
conclusion, the majority of genes are uniquely induced
by either E2 or EGF and only for a limited number
of genes there is an agonistic or antagonistic effect.
Similar conclusions can be drawn for E2 and EGF down
regulated genes.

E2 and EGF induced cell signalling responsible for cell
proliferation
E2 and EGF induced expression of genes known to be
involved in the control of cell proliferation, and these were
different for E2 and EGF induced genes (Additional file 8:
Table S3). Thus, an important part of the E2 induced
signalling centres around activation of RB1-E2F pathway
that regulates the progression through the G1 phase of the
mammalian cell cycle [44]. This involves phosphorylation
of RB1 by the CyclinD/CdK4/6 complex. Factors activating
the CyclinD/CdK4/6 complex include CDC25A and MYC,
and inhibitors include CDKN1A (p21), SMAD3, TGFB
members, and CDKN2B (p15/INK4). The up- and down-
regulation of these factors by E2 and/or EGFR are
presented in Additional file 8: Table S3. These data
clearly show that there is a general up regulation of
activating factors, and a down regulation of inhibitors
of CyclinD/CdK4/6 by E2. This results in activation of
E2F mediated transcription which is exemplified by
increased transcription of E2F regulated genes [45] such
as CCNA1, CCND1, CCNE2, TK1, PCNA, DHFR, EZH2,
and CDC6 (Additional file 8: Table S3). At the same time,
pro-apoptosis factors (SGPL1, BIK, BMF, APAF1) are
down regulated and anti-apoptotic factors (FAIM3, BCL2,
IER3, HSPB) are upregulated, which contributes to cell
proliferation and survival.
Interestingly, also a number of oncogenes is up regulated

by E2 (MERTK, RET and its ligand ARTN), and several
(putative) tumor suppressor genes are down regulated by
E2 (BLNK, LATS2, RPRM) that are not, or less, regulated
by EGF (Additional file 8: Table S3). Many of these
E2-induced changes in gene expression could be inhibited
with TAM (average inhibition >50%).
On the other hand, EGF-induced signalling relies more

on activation of the RAS/RAF/MEK/MAPK/ELK1 and
PI3K/Akt pathways because phosphorylation of MAPK1/3
and Akt were greatly increased after EGF stimulation of
MCF7/EGFR cells (Figure 1, 5A). Consistent with this
activation, transcription of FOS, EGR1 and JUNB [46-48]
was increased by EGF (Additional file 8: Table S3),
and also up regulation of RELB, GADD45A, ETV5,
ANGPTL4, and down regulation of TOB1 and PDCD4



Figure 6 Differentially expressed genes by E2 and EGF compared to controls and effect of TAM. (A). Number of genes significantly up- or
down-regulated (>1.5×) in MCF7-EGFR cells 6 hr after treatment with E2 (10 nM), EGF (100 ng/ml) or E2 + EGF, with and without 10 μM TAM, compared
to controls as determined by microarray gene expression analysis. (B) The percentage inhibition by TAM for genes >1.5× fold up regulated by exposure
to E2 or EGF. (C) The percentage inhibition by TAM for genes >1.5× fold dow nregulated by exposure to E2 or EGF. Also shown is the inhibition by TAM
of the subsets of E2 or EGF regulated genes that are also regulated by E2 or EGF under the condition of combined exposure to E2 + EGF.
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which is part of a MAPK signature in MCF7 cells
[49] was observed. Moreover, further increase of JUN/FOS
signalling may occur through cooperation with Smad3
[50] because expression of this factor is also increased
several fold as is the upstream regulator of Smad
signalling, TGFBR2 and its ligand TGFB2.
Because the results so far had indicated that EGFR-driven

proliferation may be dependent on the PI3K/Akt pathway



Figure 7 Overlap of E2 and EGF regulated genes. Overlap of genes significantly up- (A) or down-regulated (B) (>1.5×) in MCF7-EGFR cells
6 hr after treatment with E2 (10 nM), EGF (100 ng/ml) or E2 + EGF as determined microarray gene expression analysis.
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and to a lesser extent on the MEK/MAPK pathway, we also
investigated PI3K/Akt regulated gene expression. This may
be accomplished via the transcription factors, CREB and
NF-κB [51,52]. Indeed, several CREB target genes [53]
including oncogenes involved in RAS and JUN activation
(CRKL) and inhibition of CDKNB1/p27 Kip1 and p53
activity (MLF1), an anti-apoptotic protein (MCL1), and a
membrane receptor signal regulator (GEM) were increased
after EGF stimulation.
Another pathway that is activated after EGF stimula-

tion is STAT3 mediated signalling. Stat3 can be activated
through EGFR signalling [54], but signalling through this
pathway may also be increased because expression of
both this transcription factor itself and its upstream
activator, IL20 are increased after EGF stimulation
(Additional file 8: Table S3). In addition, the receptor
components IL6R, OSMR, GP130 and the ligand LIF
are also increased which may lead to STAT3 activation
through JAK2 [55].
Also after EGF stimulation (similar to E2 stimulation),

there is a down regulation of pro-apoptosis factors
(SGPL1, BIK, BMF, APAF1) and a tumor suppressor
(BLNK), and up regulation of anti-apoptotic factors
(FAIM3, HSPB), which may contribute to cell proliferation
and survival.

Discussion
Resistance to endocrine therapy in breast cancer remains
a major problem in the clinic. The mechanism behind this
resistance is complex and it is still unclear whether
tamoxifen resistance is based on 1) decreased transcrip-
tion inhibition and consequent proliferation inhibition, 2)
decreased proliferation inhibition via non-classical
genomic or non-genomic actions of the ERα, or 3)
ERα-independent mechanisms. Here we studied the
role of EGFR signalling in this process, using estrogen
responsive MCF7 cells that have increased expression of
wild type EGFR. We showed that EGF-driven signalling in
these cells is sufficient to maintain ERα-independent cell
proliferation.
We generated a MCF7 cell line with ectopic expression

of EGFR, which allowed the unbiased analysis of the inter-
action of EGFR and ERα signalling. In contrast, in many
studies on the mechanism of tamoxifen resistance, MCF7
cells are used that already have an increased expression or
constitutive activation of EGFR and/or downstream MAPK
or Akt activation due to long term culture in the presence
of tamoxifen [9,10,22]. This prohibits the investigation of
the intrinsic effect of EGFR signalling on the antagonistic
activity of tamoxifen in cells that, in the absence of EGF,
respond similarly as the parental MCF7 cells. With respect
to ERα expression, this was similar in our MCF7-EGFR and
parent MCF7 cells, and resembles tamoxifen resistant ERα
positive human tumours that express ERα at normal levels
[56,57]. Therefore, our MCF7-EGFR cell line represents an
important tool to study the mechanisms of tamoxifen
resistance in a more clinically relevant model.
Ectopic expression of human EGFR in MCF7 cells

induced cell proliferation upon stimulation with EGF,
which was ERα-independent, since ERα knock down did
not affect EGF induced proliferation. In agreement with
this, EGF-induced proliferation was not blocked by
tamoxifen or fulvestrant. Therefore, increased EGFR
expression in ERα positive breast cancers may be a sole
important determinant for prediction of anti-estrogen
resistance. Although our data are consistent with litera-
ture data showing tamoxifen, and also (partly) fulvestrant
resistance upon increased EGFR expression in breast
cancer cells, typically these studies involved human breast
cancer cell lines that were long term cultured in the pres-
ence of these antagonists [9,10,22]. It cannot be excluded
that additional changes in other cellular signalling path-
ways parallel or downstream of the EGFR may be mutated
in these models as well. It is relevant to note that while
EGF-induced cell proliferation in MCF7-EGFR cells was
ERα independent and tamoxifen insensitive, the majority
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of E2-induced transcriptional changes in MCF7-EGFR
cells remained sensitive to tamoxifen after EGF stimulation.
These data clearly indicate that during E2 and EGF
co-exposure, cell proliferation and E2-induced transcrip-
tion are controlled by different signalling pathways.
The parental MCF7 and MCF7-EGFR cells showed a

small increase in MAPK1/3 activation after E2 stimulation
which seems consistent with the results of Migliaccio
et al. [58] who observed a 2–3 fold MAPK1/3 activation in
MCF7 cells several minutes after estradiol exposure by
measuring radiolabelled phosphate incorporation in a
MAPK substrate. However, the increase MAPK1/3 activa-
tion by EGF in our MCF7 and MCF7-EGFR cells (5 and
35 fold respectively) is much bigger than the activation by
estradiol (1.5 and 2 fold).
In tamoxifen resistant breast tumour cells an agonistic

effect was observed by tamoxifen both at the level of
ERα-mediated transcription and cell proliferation [9,33].
It has been suggested that these effects of tamoxifen
depend on the phosphorylation of ERα by MAPK1/3 [9,33].
However, not all groups find agonistic effects of tamoxifen
on transcription and/or proliferation after increased
MAPK activation and ERα serine 118 phosphorylation
[34]. Similarly, in our MCF7-EGFR model also no agonistic
effects of tamoxifen were observed on proliferation and
transcription. This is not surprising as the proliferation of
MCF7-EGFR cells after EGF stimulation is already high,
and any possible additional agonistic effects of tamoxifen
may therefore not become manifest. However, it may also
be the result of other cell types being used in the previous
studies compared to our present cell lines. The lack of an
agonistic effect of tamoxifen on transcription after EGFR
activation actually suggests that no agonistic effects of
tamoxifen are induced in our MCF7-EGFR cells by
enhanced EGFR signalling.
EGFR activation in MCF7-EGFR cells caused strong

downstream activation of both the MAPK and Akt
signalling cascades. Using specific inhibitors we demon-
strated that the MEK/MAPK pathway is not dominant
in EGFR-driven proliferation. Recently, using insertion
mutagenesis in an estrogen-dependent breast carcinoma
cell line, a panel of 7 candidate breast cancer anti-estrogen
resistant (BCAR) genes were identified that directly
underlie estrogen independence leading to tamoxifen
resistance, including both EGFR, AKT1, and AKT2 [59].
Importantly, the mRNA levels of these latter candidates in
breast cancer material were significantly correlated with
progression or metastasis free survival [60]. These data
support our findings about the importance of the
PI3K/Akt in the EGFR signalling leading to estrogen
independent proliferation and tamoxifen insensitivity. The
remaining question is which of the downstream targets of
AKT are ultimately responsible for EGF- induced prolifer-
ation in MCF7-EGFR cells. One of the candidates may be
c-Jun NH2- terminal kinase (JNK), which can regulate
activator protein (AP)-1 transcription of e.g. cyclin D1 and
other proliferation and survival genes. This hypothesis is
strengthened e.g. by the data of Johnston et al., showing
increased JNK activity and AP-1 DNA-binding in tumours
of resistant patients [61]. Our transcriptomic data are in
agreement with this, but also show activation of other cell
survival and proliferation signalling pathways by EGF,
such as Smad3 and Stat3 signalling, and most likely each
of these contribute to overall cell growth induced by
EGFR activation in MCF7/EGFR cells.

Conclusions
In conclusion, in this paper we have shown that ectopic
expression of EGFR creates an enhanced EGFR signal-
ling that can take over proliferation signalling when
E2-driven proliferation is inhibited by anti-estrogen
therapy. This EGFR-driven proliferation may be dependent
on the PI3K/Akt pathway and to a lesser extent on the
MEK/MAPK pathway.
To overcome anti-estrogen insensitivity induced by this

EGFR signalling, treatment with inhibitors of the EGFR-
PI3K/Akt signalling pathway is indicated. However, our
model shows that EGFR over expressing cells may still
be estrogen sensitive after such treatment. Therefore,
EGFR-PI3K/Akt pathway inhibitors should preferentially
be combined with anti- estrogen treatment.

Additional files

Additional file 1: Figure S1. EGFR over expression induces tamoxifen
resistance as measured by an alternative cell proliferation assay. MCF7-EGFR
cells were estrogen starved 48 hours prior to a 5 day proliferation period in
the absence or presence of 0.1 nM E2 with or without EGF (100 ng/mL) and
a concentration series of TAM. Afterwards, cells were treated and stained
with Hoechst 33258 as described in the Methods section. Data represent
the average ± SEM (n = 3).

Additional file 2: Figure S2. EGF does not downregulate ERα. After
48 hours estrogen starvation, MCF7-wt and MCF7-EGFR cells were
exposed to 100 ng/mL EGF at day 1 and 3, and EGFR and ERα were
analysed on western blots after 2 and 5 days. The ratios of EGFR and
ERα over tubulin are indicated below the blots.

Additional file 3: Figure S3. Ectopic EGFR expression does not induce
tamoxifen resistance on the transcriptional level. Parental MCF7 (A) and
MCF7-EGFR (B) cells were transiently transfected with an ERE-tk- luciferase
construct and estrogen starved for 48 hours before stimulation with
either E2 (0.1 nM) or EGF (100 ng/mL), with or without TAM (100 nM),
or with E2, EGF and TAM, for 12 hours. The normalised luminescence
intensity is shown.

Additional file 4: Figure S4. EGF stimulation of MCF7-EGFR cells
induces only little ERE-dependent transcription that is not enhanced
by TAM. Parental MCF7 (A) and MCF7-EGFR (B) cells were transiently
transfected with an ERE-tk- luciferase construct and estrogen starved for
48 hours before stimulation with either E2 (0.1 nM) or EGF (100 ng/mL),
with or without TAM (100 nM), for 2–12 hours. The normalised luminescence
intensity is shown.

Additional file 5: Figure S5. Ectopic EGFR expression does not induce
agonistic effects of tamoxifen. Parental MCF7 and MCF7-EGFR cells were
estrogen starved 48 hours prior to a 5 day proliferation period with a
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concentration series TAM, with or without 100 ng/mL EGF. Afterwards,
cells were fixed with 50% TCA and stained with sulforhodamin B, which
absorbance was measured at 540 nm. Data represent the average ± SEM
(n = 3).

Additional file 6: Table S1. Agonistic effect of E2 and EGF on gene
expression.

Additional file 7: Table S2. Antagonistic effect of EGF on E2 induced
gene expression.

Additional file 8: Table S3. E2 and EGF induced changes in gene
expression related to cell proliferation.

Abbreviations
ERα: Estrogen receptor alpha; EGF (R): Epidermal growth factor (receptor);
E2: 17β-estradiol; PI3K: Phosphoinositide 3-kinase; Akt: v-akt murine thymoma
viral oncogene homolog; MEK: Mitogen activated protein kinase kinase;
MAPK1/3: Mitogen activated protein kinase 1/3; RTK: Receptor tyrosine kinase;
TAM: 4-hydroxy-tamoxifen; SRB: Sulforhodamin B; siRNA: Short interference
RNA; ERE: Estrogen responsive element.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MM determined MAPK and Akt activation, performed the SRB proliferation
assays, the siRNA knock-down experiments, the luciferase assays and drafted
the manuscript. YZ established the MCF7-EGFR cells and characterized these
by immunofluorescence and immunoblotting. LW performed the Hoechst
cell proliferation assay. JM and BvdW conceived of the study and designed
and coordinated the experiments and helped to draft the manuscript.
All authors read and approved the final manuscript.

Acknowledgements
We kindly acknowledge Rob Michalides and Fred Dijcks for fruitful
discussions and ERE-luc constructs. Human EGFR retroviral construct was
kindly provided by Erik Danen. This study was performed within the framework
of the Dutch Top Institute Pharma, project T3-107.

Received: 29 January 2014 Accepted: 8 April 2014
Published: 23 April 2014

References
1. Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M, Nicholson

RI: Epidermal growth factor receptor/HER2/insulin-like growth factor
receptor signalling and oestrogen receptor activity in clinical breast
cancer. Endocr Relat Cancer 2005, 12(Suppl 1):S99–S111.

2. Cleator SJ, Ahamed E, Coombes RC, Palmieri C: A 2009 update on the
treatment of patients with hormone receptor-positive breast cancer.
Clin Breast Cancer 2009, 9(1):S6–S17.

3. Musgrove EA, Sutherland RL: Biological determinants of endocrine
resistance in breast cancer. Nat Rev Cancer 2009, 9(9):631–643.

4. Mass R: The role of HER-2 expression in predicting response to therapy in
breast cancer. Semin Oncol 2000, 27(6 Suppl 11):46–52. discussion 92–100.

5. Nicholson RI, McClelland RA, Finlay P, Eaton CL, Gullick WJ, Dixon AR,
Robertson JF, Ellis IO, Blamey RW: Relationship between EGF-R, c-erbB-2
protein expression and Ki67 immunostaining in breast cancer and
hormone sensitivity. Eur J Cancer 1993, 29A(7):1018–1023.

6. Gee JM, Robertson JF, Ellis IO, Nicholson RI: Phosphorylation of ERK1/2
mitogen-activated protein kinase is associated with poor response to
anti- hormonal therapy and decreased patient survival in clinical breast
cancer. Int J Cancer 2001, 95(4):247–254.

7. Sarwar N, Kim JS, Jiang J, Peston D, Sinnett HD, Madden P, Gee JM, Nicholson RI,
Lykkesfeldt AE, Shousha S, Coombes RC, Ali S: Phosphorylation of ERalpha at
serine 118 in primary breast cancer and in tamoxifen-resistant tumours is
indicative of a complex role for ERalpha phosphorylation in breast cancer
progression. Endocr Relat Cancer 2006, 13(3):851–861.

8. Yamashita H, Nishio M, Kobayashi S, Ando Y, Sugiura H, Zhang Z,
Hamaguchi M, Mita K, Fujii Y, Iwase H: Phosphorylation of estrogen
receptor alpha serine 167 is predictive of response to endocrine therapy
and increases postrelapse survival in metastatic breast cancer. Breast Cancer
Res 2005, 7(5):R753–R764.

9. Ghayad SE, Vendrell JA, Larbi SB, Dumontet C, Bieche I, Cohen PA:
Endocrine resistance associated with activated ErbB system in breast
cancer cells is reversed by inhibiting MAPK or PI3K/Akt signaling
pathways. Int J Cancer 2009, 126(2):545–562.

10. Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME,
Barrow D, Wakeling AE, Nicholson RI: Elevated levels of epidermal growth
factor receptor/c-erbB2 heterodimers mediate an autocrine growth
regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 2003,
144(3):1032–1044.

11. McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J,
Knowlden JM, Gee JM, Nicholson RI: Enhanced epidermal growth factor
receptor signaling in MCF7 breast cancer cells after long-term culture in
the presence of the pure antiestrogen ICI 182,780 (Faslodex).
Endocrinology 2001, 142(7):2776–2788.

12. Fan P, Wang J, Santen RJ, Yue W: Long-term treatment with tamoxifen
facilitates translocation of estrogen receptor alpha out of the nucleus
and enhances its interaction with EGFR in MCF-7 breast cancer cells.
Cancer Res 2007, 67(3):1352–1360.

13. Nicholson RI, Hutcheson IR, Harper ME, Knowlden JM, Barrow D, McClelland RA,
Jones HE, Wakeling AE, Gee JM: Modulation of epidermal growth factor
receptor in endocrine-resistant, oestrogen receptor-positive breast cancer.
Endocr Relat Cancer 2001, 8(3):175–182.

14. Rimawi M, Schiff R: Tamoxifen resistance in breast tumors is driven by
growth factor receptor signaling with repression of classic estrogen
receptor genomic function. Cancer Res 2008, 68(3):826–833.

15. Oh AS, Lorant LA, Holloway JN, Miller DL, Kern FG, El-Ashry D: Hyperactivation
of MAPK induces loss of ERalpha expression in breast cancer cells.
Mol Endocrinol 2001, 15(8):1344–1359.

16. Nicholson RI, Staka C, Boyns F, Hutcheson IR, Gee JM: Growth factor-driven
mechanisms associated with resistance to estrogen deprivation in breast
cancer: new opportunities for therapy. Endocr Relat Cancer 2004,
11(4):623–641.

17. Stoica A, Saceda M, Doraiswamy VL, Coleman C, Martin MB: Regulation of
estrogen receptor-alpha gene expression by epidermal growth factor.
J Endocrinol 2000, 165(2):371–378.

18. Arpino G, Green SJ, Allred DC, Lew D, Martino S, Osborne CK, Elledge RM:
HER-2 amplification, HER-1 expression, and tamoxifen response in estrogen
receptor- positive metastatic breast cancer: a southwest oncology group
study. Clin Cancer Res 2004, 10(17):5670–5676.

19. Wrba F, Reiner A, Ritzinger E, Holzner JH, Reiner G: Expression of epidermal
growth factor receptors (EGFR) on breast carcinomas in relation to
growth fractions, estrogen receptor status and morphological criteria.
An immunohistochemical study. Pathol Res Pract 1988, 183(1):25–29.

20. Gutteridge E, Agrawal A, Nicholson R, Leung Cheung K, Robertson J, Gee J:
The effects of gefitinib in tamoxifen-resistant and hormone-insensitive
breast cancer: a phase II study. Int J Cancer 2010, 126(8):1806–1816.

21. Klijn JG, Berns PM, Schmitz PI, Foekens JA: The clinical significance of
epidermal growth factor receptor (EGF-R) in human breast cancer: a
review on 5232 patients. Endocr Rev 1992, 13(1):3–17.

22. Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, Wakeling AE,
Nicholson RI: Oestrogen receptor-mediated modulation of the EGFR/MAPK
pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res Treat 2003,
81(1):81–93.

23. Knowlden JM, Hutcheson IR, Barrow D, Gee JM, Nicholson RI: Insulin-like
growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a
supporting role to the epidermal growth factor receptor. Endocrinology
2005, 146(11):4609–4618.

24. Riggins RB, Thomas KS, Ta HQ, Wen J, Davis RJ, Schuh NR, Donelan SS,
Owen KA, Gibson MA, Shupnik MA, Silva CM, Parsons SJ, Clarke R, Bouton AH:
Physical and functional interactions between Cas and c-Src induce
tamoxifen resistance of breast cancer cells through pathways involving
epidermal growth factor receptor and signal transducer and activator of
transcription 5b. Cancer Res 2006, 66(14):7007–7015.

25. van Agthoven T, van Agthoven TL, Portengen H, Foekens JA, Dorssers LC:
Ectopic expression of epidermal growth factor receptors induces
hormone independence in ZR-75-1 human breast cancer cells. Cancer Res
1992, 52(18):5082–5088.

26. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R, Barrow D,
Nicholson RI: Tamoxifen resistance in MCF7 cells promotes EMT-like

http://www.biomedcentral.com/content/supplementary/1471-2407-14-283-S6.doc
http://www.biomedcentral.com/content/supplementary/1471-2407-14-283-S7.doc
http://www.biomedcentral.com/content/supplementary/1471-2407-14-283-S8.doc


Moerkens et al. BMC Cancer 2014, 14:283 Page 15 of 15
http://www.biomedcentral.com/1471-2407/14/283
behaviour and involves modulation of beta-catenin phosphorylation.
Int J Cancer 2006, 118(2):290–301.

27. Pietras RJ, Marquez-Garban DC: Membrane-associated estrogen receptor
signaling pathways in human cancers. Clin Cancer Res 2007,
13(16):4672–4676.

28. Song RX, Zhang Z, Chen Y, Bao Y, Santen RJ: Estrogen signaling via a
linear pathway involving insulin-like growth factor I receptor, matrix
activated protein kinase in MCF-7 breast cancer cells. Endocrinology 2007,
148(8):4091–4101.

29. Fox EM, Bernaciak TM, Wen J, Weaver AM, Shupnik MA, Silva CM: Signal
transducer and activator of transcription 5b, c-Src, and epidermal growth
factor receptor signaling play integral roles in estrogen-stimulated
proliferation of estrogen receptor-positive breast cancer cells.
Mol Endocrinol 2008, 22(8):1781–1796.

30. Massarweh S, Schiff R: Resistance to endocrine therapy in breast cancer:
exploiting estrogen receptor/growth factor signaling crosstalk. Endocr Relat
Cancer 2006, 13(Suppl 1):S15–S24.

31. Cheng J, Zhang C, Shapiro DJ: A functional serine 118 phosphorylation
site in estrogen receptor-alpha is required for down-regulation of gene
expression by 17beta-estradiol and 4-hydroxytamoxifen. Endocrinology 2007,
148(10):4634–4641.

32. Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA:
Kinase- specific phosphorylation of the estrogen receptor changes
receptor interactions with ligand, deoxyribonucleic acid, and
coregulators associated with alterations in estrogen and tamoxifen
activity. Mol Endocrinol 2006, 20(12):3120–3132.

33. Zwart W, Griekspoor A, Rondaij M, Verwoerd D, Neefjes J, Michalides R:
Classification of anti-estrogens according to intramolecular FRET effects
on phospho-mutants of estrogen receptor alpha. Mol Cancer Ther 2007,
6(5):1526–1533.

34. Atanaskova N, Keshamouni VG, Krueger JS, Schwartz JA, Miller F, Reddy KB:
MAP kinase/estrogen receptor cross-talk enhances estrogen-mediated
signaling and tumor growth but does not confer tamoxifen resistance.
Oncogene 2002, 21(25):4000–4008.

35. Huveneers S, van den Bout I, Sonneveld P, Sancho A, Sonnenberg A, Danen EH:
Integrin alpha v beta 3 controls activity and oncogenic potential of primed
c-Src. Cancer Res 2007, 67(6):2693–2700.

36. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT,
Bokesch H, Kenney S, Boyd MR: New colorimetric cytotoxicity assay for
anticancer-drug screening. J Natl Cancer Inst 1990, 82(13):1107–1112.

37. Rago R, Mitchen J, Wilding G: DNA fluorometric assay in 96-well tissue
culture plates using Hoechst 33258 after cell lysis by freezing in distilled
water. Anal Biochem 1990, 191(1):31–34.

38. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP: Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics 2003, 4(2):249–264.

39. Wright GW, Simon RM: A random variance model for detection of
differential gene expression in small microarray experiments.
Bioinformatics 2003, 19(18):2448–2455.

40. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B
(Methodological) 1995, 57:289–300.

41. Dauvois S, White R, Parker MG: The antiestrogen ICI 182780 disrupts
estrogen receptor nucleocytoplasmic shuttling. J Cell Sci 1993,
106(Pt 4):1377–1388.

42. Shah YM, Rowan BG: The Src kinase pathway promotes tamoxifen agonist
action in Ishikawa endometrial cells through phosphorylation-dependent
stabilization of estrogen receptor (alpha) promoter interaction and
elevated steroid receptor coactivator 1 activity. Mol Endocrinol 2005,
19(3):732–748.

43. Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S: Phosphorylation at
serines 104 and 106 by Erk1/2 MAPK is important for estrogen
receptor-alpha activity. J Mol Endocrinol 2008, 40(4):173–184.

44. Chen HZ, Tsai SY, Leone G: Emerging roles of E2Fs in cancer: an exit from
cell cycle control. Nat Rev Cancer 2009, 9(11):785–797.

45. Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M, Nevins JR: Role for
E2F in control of both DNA replication and mitotic functions as revealed
from DNA microarray analysis. Mol Cell Biol 2001, 21(14):4684–4699.

46. Dalton S, Treisman R: Characterization of SAP-1, a protein recruited by
serum response factor to the c-fos serum response element. Cell 1992,
68(3):597–612.
47. Shaulian E, Karin M: AP-1 in cell proliferation and survival. Oncogene 2001,
20(19):2390–2400.

48. Hipskind RA, Rao VN, Mueller CG, Reddy ES, Nordheim A: Ets-related
protein Elk-1 is homologous to the c-fos regulatory factor p62TCF.
Nature 1991, 354(6354):531–534.

49. Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D:
Activation of mitogen-activated protein kinase in estrogen receptor
alpha- estrogen receptor alpha-negative human breast tumors.
Cancer Res 2006, 66(7):3903–3911.

50. Zhang Y, Feng XH, Derynck R: Smad3 and Smad4 cooperate with c-Jun/c-Fos
to mediate TGF-beta-induced transcription. Nature 1998, 394(6696):909–913.

51. Brunet A, Datta SR, Greenberg ME: Transcription-dependent and
-independent control of neuronal survival by the PI3K-Akt signaling
pathway. Curr Opin Neurobiol 2001, 11(3):297–305.

52. Du K, Montminy M: CREB is a regulatory target for the protein kinase
Akt/PKB. J Biol Chem 1998, 273(49):32377–32379.

53. Conkright MD, Guzman E, Flechner L, Su AI, Hogenesch JB, Montminy M:
Genome-wide analysis of CREB target genes reveals a core promoter
requirement for cAMP responsiveness. Mol Cell 2003, 11(4):1101–1108.

54. Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE: ErbB receptor-induced
activation of stat transcription factors is mediated by Src tyrosine kinases.
J Biol Chem 1999, 274(24):17209–17218.

55. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR,
Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, Wu Z, Gönen M,
Mulvey LA, Bessarabova MO, Huh SJ, Silver SJ, Kim SY, Park SY, Lee HE,
Anderson KS, Richardson AL, Nikolskaya T, Nikolsky Y, Liu XS, Root DE,
Hahn WC, Frank DA, Polyak K: The JAK2/STAT3 signaling pathway is
required for growth of CD44CD24 stem cell-like breast cancer cells in
human tumors. J Clin Invest 2011, 121(7):2723–2735.

56. Encarnacion CA, Ciocca DR, McGuire WL, Clark GM, Fuqua SA, Osborne CK:
Measurement of steroid hormone receptors in breast cancer patients on
tamoxifen. Breast Cancer Res Treat 1993, 26(3):237–246.

57. Robertson JF: Oestrogen receptor: a stable phenotype in breast cancer.
Br J Cancer 1996, 73(1):5–12.

58. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E,
Auricchio F: Tyrosine kinase/p21ras/MAP-kinase pathway activation by
estradiol-receptor complex in MCF-7 cells. EMBO J 1996, 15(6):1292–1300.

59. van Agthoven T, Veldscholte J, Smid M, van Agthoven TL, Vreede L,
Broertjes M, de Vries I, de Jong D, Sarwari R, Dorssers LC: Functional
identification of genes causing estrogen independence of human breast
cancer cells. Breast Cancer Res Treat 2009, 114(1):23–30.

60. van Agthoven T, Sieuwerts AM, Meijer-van Gelder ME, Look MP, Smid M,
Veldscholte J, Sleijfer S, Foekens JA, Dorssers LC: Relevance of breast cancer
antiestrogen resistance genes in human breast cancer progression and
tamoxifen resistance. J Clin Oncol 2009, 27(4):542–549.

61. Johnston SR, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M, Benz CC:
Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase
activity in human breast tumors with acquired tamoxifen resistance.
Clin Cancer Res 1999, 5(2):251–256.

doi:10.1186/1471-2407-14-283
Cite this article as: Moerkens et al.: Epidermal growth factor receptor
signalling in human breast cancer cells operates parallel to estrogen
receptor α signalling and results in tamoxifen insensitive proliferation.
BMC Cancer 2014 14:283.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Materials
	Cell culture
	Establishment of MCF EGFR cells
	Proliferation assay
	Immunoblotting
	Immunofluorescent microscopy
	Small interfering RNA (siRNA)-based knockdown
	Luciferase reporter assays
	Transcriptomics analysis
	Statistical analysis

	Results
	EGFR over expression in MCF7 cells enhances downstream MAPK and Akt signalling
	MCF7-EGFR proliferation can be induced by both estrogen and EGF
	Ectopic EGFR expression provides resistance to the anti-estrogen tamoxifen
	MCF- EGFR cells show resistance to the anti-estrogen fulvestrant
	Knock down of ERα blocks E2- but not EGF-induced proliferation
	MEK/MAPK pathway is not responsible for EGFR-mediated proliferation and tamoxifen “resistance” of MCF7-EGFR cells
	Overexpression of EGFR does not overcome tamoxifen inhibition on transcriptional level
	Overexpression of EGFR does not induce agonistic effects of tamoxifen
	Microarray gene expression analysis of E2 and EGF induced genes
	E2 and EGF induced cell signalling responsible for cell proliferation

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

