2,209 research outputs found

    Narrowing of Plasmon Resonance Peaks as an Ensemble Effect

    Get PDF
    The frequency of localized surface plasmon resonance (LSPR) displayed by gold nanoparticles (AuNPs) redshifts as a function of their local refractive index, which renders them valuable transducers for sensing applications. An ensemble hypothesis is presented herein, along with spectroscopic evidence, using the biotin-streptavidin system on immobilized AuNPs to interpret the decrease in ensemble linewidth (ELW) consistently observed upon functionalization of plasmonic nanoparticles and the subsequent analyte binding. These results demonstrate that ELW can be used to monitor recognition reactions, providing spectral details and a possible sensitivity enhancement to the conventional wavelength sensing. A novel sensing platform allowing the simultaneous measurement of both LSPR wavelength and ELW is proposed, which not only combines the advantages of both parameters but also permits real-time measurement and miniaturization

    Optimal Timing and Duration of Induction Therapy for HIV-1 Infection

    Get PDF
    The tradeoff between the need to suppress drug-resistant viruses and the problem of treatment toxicity has led to the development of various drug-sparing HIV-1 treatment strategies. Here we use a stochastic simulation model for viral dynamics to investigate how the timing and duration of the induction phase of induction–maintenance therapies might be optimized. Our model suggests that under a variety of biologically plausible conditions, 6–10 mo of induction therapy are needed to achieve durable suppression and maximize the probability of eradicating viruses resistant to the maintenance regimen. For induction regimens of more limited duration, a delayed-induction or -intensification period initiated sometime after the start of maintenance therapy appears to be optimal. The optimal delay length depends on the fitness of resistant viruses and the rate at which target-cell populations recover after therapy is initiated. These observations have implications for both the timing and the kinds of drugs selected for induction–maintenance and therapy-intensification strategies

    Cascading ecological effects from local extirpation of an ecosystem engineer in the Arava desert

    Get PDF
    The extinction of a single species from a local community may carry little cost in terms of species diversity, yet its loss eliminates its biotic and abiotic interactions. We describe such a scenario in the Arava desert, where different cultural and law enforcement practices exclude Dorcas gazelles (Gazella dorcas (Linnaeus, 1758)) from the Jordanian side of the border while protecting their populations on the Israeli side. We found that gazelles break the soil crust, formed in desert systems after annual flooding, thereby creating patches of loose and cooler sand that are used by pit-building antlions (Neuroptera: Myrmeleontidae). When we artificially broke the soil crust on both sides of the border, we found a significant increase in antlion density in these patches, but only on the Israeli side. On the Jordanian side, where no gazelles have been observed since the early 1980s, no antlions colonized either control or manipulated plots. Additional choice/no-choice feeding experiments, in which we offered antlions to lizards and birds, revealed that the effect of humans on gazelles cascades farther, as antlions serve as a palatable food source for both groups. Thus, the human-mediated loss of nontrophic interactions between gazelles and antlions cascades to the loss of trophic interactions between antlions and their predators

    NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley

    Get PDF
    Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores

    A Mass-Producible and Versatile Sensing System: Localized Surface Plasmon Resonance Excited by Individual Waveguide Modes

    Get PDF
    A plasmonic sensing system that allows the excitation of localized surface plasmon resonance (LSPR) by individual waveguide modes is presented conceptually and experimentally. Any change in the local environment of the gold nanoparticles (AuNPs) alters the degree of coupling between LSPR and a polymer slab waveguide, which then modulates the transmission-output signal. In comparison to conventional LSPR sensors, this system is less susceptible to optical noise and positional variation of signals. Moreover, it enables more freedom in the exploitation of plasmonic hot spots with both transverse electric (TE) and transverse magnetic (TM) modes. Through real-time measurement, it is demonstrated that the current sensing system is more sensitive than comparable optical fiber plasmonic sensors. The highest normalized bulk sensitivity (7.744 RIU-1) is found in the TM1 mode. Biosensing with the biotin-streptavidin system shows that the detection limit is on the order of 10-14 M of streptavidin. With further optimization, this sensing system can easily be mass-produced and incorporated into high throughput screening devices, detecting a variety of chemical and biological analytes via immobilization of the appropriate recognition sites

    Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    Get PDF
    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance.This work was supported by the Ministry of Economy and Competitiveness from Spain (GrantNo. AGL2015-66033-R), and Seneca Foundation from Region of Murcia, Spain (Grant no.15288/ PI/10).Peer reviewedPeer Reviewe

    IL-33 expression in response to SARS-CoV-2 correlates with seropositivity in COVID-19 convalescent individuals

    Get PDF
    Our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still developing. We perform an observational study to investigate seroprevalence and immune responses in subjects professionally exposed to SARS-CoV-2 and their family members (155 individuals; ages 5-79 years). Seropositivity for SARS-CoV-2 Spike glycoprotein aligns with PCR results that confirm the previous infection. Anti-Spike IgG/IgM titers remain high 60 days post-infection and do not strongly associate with symptoms, except for fever. We analyze PBMCs from a subset of seropositive and seronegative adults. TLR7 agonist-activation reveals an increased population of IL-6+TNF-IL-1β+ monocytes, while SARS-CoV-2 peptide stimulation elicits IL-33, IL-6, IFNa2, and IL-23 expression in seropositive individuals. IL-33 correlates with CD4+ T cell activation in PBMCs from convalescent subjects and is likely due to T cell-mediated effects on IL-33-producing cells. IL-33 is associated with pulmonary infection and chronic diseases like asthma and COPD, but its role in COVID-19 is unknown. Analysis of published scRNAseq data of bronchoalveolar lavage fluid (BALF) from patients with mild to severe COVID-19 reveals a population of IL-33-producing cells that increases with the disease. Together these findings show that IL-33 production is linked to SARS-CoV-2 infection and warrant further investigation of IL-33 in COVID-19 pathogenesis and immunity

    m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin

    Get PDF
    Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin
    corecore