155 research outputs found

    Correlated response to selection for litter size environmental variability in rabbits' resilience

    Full text link
    [EN] Resilience is the ability of an animal to return soon to its initial productivity after facing diverse environmental challenges. This trait is directly related to animal welfare and it plays a key role in fluctuations of livestock productivity. A divergent selection experiment for environmental variance of litter size has been performed successfully in rabbits over ten generations. The objective of this study was to analyse resilience indicators of stress and disease in the divergent lines of this experiment. The high line showed a lower survival rate at birth than the low line (-4.1%). After correcting by litter size, the difference was -3.2%. Involuntary culling rate was higher in the high than in the low line (+12.4%). Before vaccination against viral haemorrhagic disease or myxomatosis, concentration of lymphocytes, C-reactive protein (CRP), complement C3, serum bilirubin, triglycerides and cholesterol were higher in the high line than in the low line (difference between lines +4.5%, +5.6 mu g/ml, +4.6 mg/ml, +7.9 mmol/l, +0.3 mmol/l and +0.4 mmol/l). Immunological and biochemical responses to the two vaccines were similar. After vaccination, the percentage of lymphocytes and CRP concentration were higher in the low line than in the high one (difference between lines +4.0% and +13.1 mu g/ml). The low line also showed a higher increment in bilirubin and triglycerides than the high line (+14.2 v. +8.7 mmol/l for bilirubin and +0.11 v. +0.01 mmol/l for triglycerides); these results would agree with the protective role of bilirubin and triglycerides against the larger inflammatory response found in this line. In relation to stress, the high line had higher basal concentration of cortisol than the low line (+0.2ng/ml); the difference between lines increased more than threefold after the injection of ACTH 1 to 24, the increase being greater in the high line (+0.9 ng/ml) than in the low line (+0.4 ng/ml). Selection for divergent environmental variability of litter size leads to dams with different culling rate for reproductive causes and different kits' neonatal survival. These associations suggest that the observed fitness differences are related to differences in the inflammatory response and the corticotrope response to stress, which are two important components of physiological adaptation to environmental aggressions.This study is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) with the Projects AGL2014-55921, C2-1-P and C2-2-P, and AGL2017-86083, C2-1-P and C2-2-P.Argente, M.; Garcia, M.; Zbynovska, K.; Petruska, P.; Capcarova, M.; Blasco Mateu, A. (2019). Correlated response to selection for litter size environmental variability in rabbits' resilience. Animal. 13(10):2348-2355. https://doi.org/10.1017/S1751731119000302S234823551310Glaser, R., & Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews Immunology, 5(3), 243-251. doi:10.1038/nri1571Markanday, A. (2015). Acute Phase Reactants in Infections: Evidence-Based Review and a Guide for Clinicians. Open Forum Infectious Diseases, 2(3). doi:10.1093/ofid/ofv098Rauw, W. ., Kanis, E., Noordhuizen-Stassen, E. ., & Grommers, F. . (1998). Undesirable side effects of selection for high production efficiency in farm animals: a review. Livestock Production Science, 56(1), 15-33. doi:10.1016/s0301-6226(98)00147-xPiles, M., García, M. L., Rafel, O., Ramon, J., & Baselga, M. (2006). Genetics of litter size in three maternal lines of rabbits: Repeatability versus multiple-trait models. Journal of Animal Science, 84(9), 2309-2315. doi:10.2527/jas.2005-622Guelfi, G., Zerani, M., Brecchia, G., Parillo, F., Dall’Aglio, C., Maranesi, M., & Boiti, C. (2011). Direct actions of ACTH on ovarian function of pseudopregnant rabbits. Molecular and Cellular Endocrinology, 339(1-2), 63-71. doi:10.1016/j.mce.2011.03.017García ML , Blasco A , García ME and Argente MJ 2018. Body condition and energy mobilisation in rabbits selected for litter size variability. Animal, 1–6, https://doi.org/10.1017/S1751731118002203, Published online by Cambridge University Press 28 August 2018.Furze, R. C., & Rankin, S. M. (2008). Neutrophil mobilization and clearance in the bone marrow. Immunology, 125(3), 281-288. doi:10.1111/j.1365-2567.2008.02950.xMcDade, T. W., Borja, J. B., Kuzawa, C. W., Perez, T. L. L., & Adair, L. S. (2015). C-reactive protein response to influenza vaccination as a model of mild inflammatory stimulation in the Philippines. Vaccine, 33(17), 2004-2008. doi:10.1016/j.vaccine.2015.03.019Blasco, A. (2017). Bayesian Data Analysis for Animal Scientists. doi:10.1007/978-3-319-54274-4Castellini, C., Dal Bosco, A., Arias-Álvarez, M., Lorenzo, P. L., Cardinali, R., & Rebollar, P. G. (2010). The main factors affecting the reproductive performance of rabbit does: A review. Animal Reproduction Science, 122(3-4), 174-182. doi:10.1016/j.anireprosci.2010.10.003Rosa Neto, N. S., & Carvalho, J. F. de. (2009). O uso de provas de atividade inflamatória em reumatologia. Revista Brasileira de Reumatologia, 49(4), 413-430. doi:10.1590/s0482-50042009000400008Argente, M. J., Calle, E. W., García, M. L., & Blasco, A. (2017). Correlated response in litter size components in rabbits selected for litter size variability. Journal of Animal Breeding and Genetics, 134(6), 505-511. doi:10.1111/jbg.12283Mirkena, T., Duguma, G., Haile, A., Tibbo, M., Okeyo, A. M., Wurzinger, M., & Sölkner, J. (2010). Genetics of adaptation in domestic farm animals: A review. Livestock Science, 132(1-3), 1-12. doi:10.1016/j.livsci.2010.05.003García, M. L., Blasco, A., & Argente, M. J. (2016). Embryologic changes in rabbit lines selected for litter size variability. Theriogenology, 86(5), 1247-1250. doi:10.1016/j.theriogenology.2016.04.065Feingold KR and Grunfeld C 2015. The effect of inflammation and infection on lipids and lipoproteins. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F and Vinik A. Endotext, South Dartmouth, MA, USA. Retrieved on 7 June 2018 from https://www.ncbi.nlm.nih.gov/books/NBK326741/.Minemura, M. (2014). Liver involvement in systemic infection. World Journal of Hepatology, 6(9), 632. doi:10.4254/wjh.v6.i9.632Knap, P. W. (2005). Breeding robust pigs. Australian Journal of Experimental Agriculture, 45(8), 763. doi:10.1071/ea05041Barcia, A. M., & Harris, H. W. (2005). Triglyceride-Rich Lipoproteins as Agents of Innate Immunity. Clinical Infectious Diseases, 41(Supplement_7), S498-S503. doi:10.1086/432005Webster, J. I., Tonelli, L., & Sternberg, E. M. (2002). NEUROENDOCRINEREGULATION OFIMMUNITY. Annual Review of Immunology, 20(1), 125-163. doi:10.1146/annurev.immunol.20.082401.104914Fortun-Lamothe, L. (2006). Energy balance and reproductive performance in rabbit does. Animal Reproduction Science, 93(1-2), 1-15. doi:10.1016/j.anireprosci.2005.06.009Cabezas, S., Blas, J., Marchant, T. A., & Moreno, S. (2007). Physiological stress levels predict survival probabilities in wild rabbits. Hormones and Behavior, 51(3), 313-320. doi:10.1016/j.yhbeh.2006.11.004De Nardo, D., Labzin, L. I., Kono, H., Seki, R., Schmidt, S. V., Beyer, M., … Latz, E. (2013). High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nature Immunology, 15(2), 152-160. doi:10.1038/ni.2784BURKUŠ, J., KAČMAROVÁ, M., KUBANDOVÁ, J., KOKOŠOVÁ, N., FABIANOVÁ, K., FABIAN, D., … ČIKOŠ, Š. (2015). Stress exposure during the preimplantation period affects blastocyst lineages and offspring development. Journal of Reproduction and Development, 61(4), 325-331. doi:10.1262/jrd.2015-012Posthouwer, D., Voorbij, H. A. M., Grobbee, D. E., Numans, M. E., & van der Bom, J. G. (2004). Influenza and pneumococcal vaccination as a model to assess C-reactive protein response to mild inflammation. Vaccine, 23(3), 362-365. doi:10.1016/j.vaccine.2004.05.035Ibáñez-Escriche, N., Sorensen, D., Waagepetersen, R., & Blasco, A. (2008). Selection for Environmental Variation: A Statistical Analysis and Power Calculations to Detect Response. Genetics, 180(4), 2209-2226. doi:10.1534/genetics.108.091678Colditz, I. G., & Hine, B. C. (2016). Resilience in farm animals: biology, management, breeding and implications for animal welfare. Animal Production Science, 56(12), 1961. doi:10.1071/an15297Blasco, A., Martínez-Álvaro, M., García, M.-L., Ibáñez-Escriche, N., & Argente, M.-J. (2017). Selection for environmental variance of litter size in rabbits. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-017-0323-4Argente MJ , Santacreu MA , Climen A and Blasco A 2000. Genetic correlations between litter size and uterine capacity. In Proceeding of the 8th World Rabbit Congress, 4–7 July 2000, Valencia, Spain, pp. 333–338.Janssens, C. J., Helmond, F. A., & Wiegant, V. M. (1995). Chronic stress and pituitary–adrenocortical responses to corticotropin-releasing hormone and vasopressin in female pigs. European Journal of Endocrinology, 132(4), 479-486. doi:10.1530/eje.0.132047

    Collectivity of neutron-rich Ti isotopes

    Full text link
    The structure of the neutron-rich nucleus 58Ti was investigated via proton inelastic scattering in inverse kinematics at a mean energy of 42.0 MeV/nucleon. By measuring the deexcitation γ rays, three transitions with the energies of 1046(11) keV, 1376(18) keV, and 1835(27) keV were identified. The angle-integrated cross section for the 1046-keV excitation, which corresponds to the decay from the first 2+ state, was determined to be 13(7) mb. The deformation length δp,p′ was extracted from the cross section to be 0.83−0.30+0.22 fm. The energy of the first 2+ state and the δp,p′ value are comparable to the ones of 56Ti, which indicates that the collectivity of the Ti isotopes does not increase significantly with neutron number until N=36. This fact indicates that 58Ti is outside of the region of the deformation known in the neutron-rich nuclei around N=40

    Low-lying Proton Intruder State in 13B

    Full text link
    The neturon rich nucleus 13B was studied via the proton transfer reaction 4He(12Be,13B \gamma) at 50AMeV. The known 4.83-MeV excited state was strongly populated and its spin and parity were assigned to 1/2+ by comparing the angular differential cross section data with DWBA calculations. This low-lying 1/2+ state is interpreted as a proton intruder state and indicates a deformation of the nucleus.Comment: 16 pages, 3 figure

    Behavior of Air Bubbles in an Axial-Flow Pump Impeller

    No full text
    corecore