12 research outputs found

    Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption

    Get PDF
    Volatile element concentrations measured in melt inclusions are a key tool used to understand magma migration and degassing, although their original values may be affected by different re-equilibration processes. Additionally, the inclusion-bearing crystals can have a wide range of origins and ages, further complicating the interpretation of magmatic processes. To clarify some of these issues, here we combined olivine diffusion chronometry and melt inclusion data from the 2008 eruption of Llaima volcano (Chile). We found that magma intrusion occurred about 4 years before the eruption at a minimum depth of approximately 8 km. Magma migration and reaction became shallower with time, and about 6 months before the eruption magma reached 3–4 km depth. This can be linked to reported seismicity and ash emissions. Although some ambiguities of interpretation still remain, crystal zoning and melt inclusion studies allow a more complete understanding of magma ascent, degassing, and volcano monitoring data.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Published versio

    Integrated field, satellite and petrological observations of the November 2010 eruption of Erta Ale

    Get PDF
    Erta Ale volcano, Ethiopia, erupted in November 2010, emplacing new lava flows on the main crater floor, the first such eruption from the southern pit into the main crater since 1973, and the first eruption at this remote volcano in the modern satellite age. For many decades, Erta Ale has contained a persistently active lava lake which is ordinarily confined, several tens of metres below the level of the main crater, within the southern pit. We combine on-the-ground field observations with multispectral imaging from the SEVIRI satellite to reconstruct the entire eruptive episode beginning on 11 November and ending prior to 14 December 2010. A period of quiescence occurred between 14 and 19 November. The main eruptive activity developed between 19 and 22 November, finally subsiding to pre-eruptive levels between 8 and 15 December. The estimated total volume of lava erupted is ?0.006 km3. The mineralogy of the 2010 lava is plagioclase?+?clinopyroxene?+?olivine. Geochemically, the lava is slightly more mafic than previously erupted lava lining the caldera floor, but lies within the range of historical lavas from Erta Ale. SIMS analysis of olivine-hosted melt inclusions shows the Erta Ale lavas to be relatively volatile-poor, with H2O contents ?1,300 ppm and CO2 contents of ?200 ppm. Incompatible trace and volatile element systematics of melt inclusions show, however, that the November 2010 lavas were volatile-saturated, and that degassing and crystallisation occurred concomitantly. Volatile saturation pressures are in the range 7–42 MPa, indicating shallow crystallisation. Calculated pre-eruption and melt inclusion entrapment temperatures from mineral/liquid thermometers are ?1,150 °C, consistent with previously published field measurements
    corecore