336 research outputs found
Calculation of the electron mobility in III-V inversion layers with high-kappa dielectrics
We calculate the electron mobility for a metal-oxide-semiconductor system with a metallic gate, high-kappa dielectric layer, and III-V substrate, including scattering with longitudinal-optical (LO) polar-phonons of the III-V substrate and with the interfacial excitations resulting from the coupling of insulator and substrate optical modes among themselves and with substrate plasmons. In treating scattering with the substrate LO-modes, multisubband dynamic screening is included and compared to the dielectric screening in the static limit and with the commonly used screening model obtained by defining an effective screening wave vector. The electron mobility components limited by substrate LO phonons and interfacial modes are calculated for In0.53Ga0.47As and GaAs substrates with SiO2 and HfO2 gate dielectrics. The mobility components limited by the LO-modes and interfacial phonons are also investigated as a function of temperature. Scattering with surface roughness, fixed interface charge, and nonpolar-phonons is also included to judge the relative impact of each scattering mechanism in the total mobility for In0.53Ga0.47As with HfO2 gate dielectric. We show that InGaAs is affected by interfacial-phonon scattering to an extent larger than Si, lowering the expected performance, but probably not enough to question the technological relevance of InGaAs. (C) 2010 American Institute of Physics. [doi:10.1063/1.3500553
Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer
Since the initial exploration of soft gamma-ray sky in the 60's, high-energy
celestial sources have been mainly characterized through imaging, spectroscopy
and timing analysis. Despite tremendous progress in the field, the radiation
mechanisms at work in sources such as neutrons stars and black holes are still
unclear. The polarization state of the radiation is an observational parameter
which brings key additional information about the physical process. This is why
most of the projects for the next generation of space missions covering the
tens of keV to the MeV region require a polarization measurement capability. A
key element enabling this capability is a detector system allowing the
identification and characterization of Compton interactions as they are the
main process at play. The hard X-ray imaging spectrometer module, developed in
CEA with the generic name of Caliste module, is such a detector. In this paper,
we present experimental results for two types of Caliste-256 modules, one based
on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed
to linearly polarized beams at the European Synchrotron Radiation Facility.
These results, obtained at 200-300 keV, demonstrate their capability to give an
accurate determination of the polarization parameters (polarization angle and
fraction) of the incoming beam. Applying a selection to our data set,
equivalent to select 90 degrees Compton scattered interactions in the detector
plane, we find a modulation factor Q of 0.78. The polarization angle and
fraction are derived with accuracies of approximately 1 degree and 5%. The
modulation factor remains larger than 0.4 when essentially no selection is made
at all on the data. These results prove that the Caliste-256 modules have
performances allowing them to be excellent candidates as detectors with
polarimetric capabilities, in particular for future space missions.Comment: 17 pages, 14 figures, 2 tables in Experimental Astronomy, 201
The COSPIX mission: focusing on the energetic and obscured Universe
Tracing the formation and evolution of all supermassive black holes,
including the obscured ones, understanding how black holes influence their
surroundings and how matter behaves under extreme conditions, are recognized as
key science objectives to be addressed by the next generation of instruments.
These are the main goals of the COSPIX proposal, made to ESA in December 2010
in the context of its call for selection of the M3 mission. In addition,
COSPIX, will also provide key measurements on the non thermal Universe,
particularly in relation to the question of the acceleration of particles, as
well as on many other fundamental questions as for example the energetic
particle content of clusters of galaxies. COSPIX is proposed as an observatory
operating from 0.3 to more than 100 keV. The payload features a single long
focal length focusing telescope offering an effective area close to ten times
larger than any scheduled focusing mission at 30 keV, an angular resolution
better than 20 arcseconds in hard X-rays, and polarimetric capabilities within
the same focal plane instrumentation. In this paper, we describe the science
objectives of the mission, its baseline design, and its performances, as
proposed to ESA.Comment: 7 pages, accepted for publication in Proceedings of Science, for the
25th Texas Symposium on Relativistic Astrophysics (eds. F. Rieger & C.
van Eldik), PoS(Texas 2010)25
Scanning transmission electron microscopy of gate stacks with HfO2 dielectrics and TiN electrodes
High-angle annular dark-field (HAADF) imaging and electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy were used to investigate HfO2 gate dielectrics grown by atomic layer deposition on Si substrates, and their interfaces with TiN electrodes and silicon, as a function of annealing temperature. Annealing at high temperatures (900 °C) caused significant roughening of both bottom (substrate) and top (electrode) interface. At the bottom interface, HAADF images showed clusters of Hf atoms that protruded into the interfacial SiO2 layer. Low-loss EELS established that even crystalline HfO2 films exposed to relative high temperatures (700 °C) exhibited significant differences in their electronic structure relative to bulk HfO2. Further annealing caused the electronic structure to more closely resemble that of bulk HfO2, with the most significant change due to annealing with the TiN electrode
Atomic layer deposition of high-k dielectric layers on Ge and III-V MOS channels
Ge and III-V semiconductors are potential high performance channel materials for future CMOS devices. In this work, we have studied At. Layer Deposition (ALD) of high-k dielec. layers on Ge and GaAs substrates. We focus at the effect of the oxidant (H2O, O3, O2, O2 plasma) during gate stack formation. GeO2, obtained by Ge oxidn. in O2 or O3, is a promising passivation layer. The germanium oxide thickness can be scaled down below 1 nm, but such thin layers contain Ge in oxidn. states lower than 4+. Still, elec. results indicate that small amts. of Ge in oxidn. states lower than 4+ are not detrimental for device performance. Partial intermixing was obsd. for high-k dielec. and GeO2 or GaAsOx, suggesting possible correlations in the ALD growth mechanisms on Ge and GaAs substrates. [on SciFinder (R)
The Scientific Performance of the Microchannel X-ray Telescope on board the SVOM Mission
The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray
telescope based on a "Lobster-Eye" optical design to be flown on Sino-French
mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more
generally time-domain astrophysics. The MXT telescope is a compact (focal
length ~ 1.15 m) and light (< 42 kg) instrument, sensitive in the 0.2--10 keV
energy range. It is composed of an optical system, based on micro-pore optics
(MPOs) of 40 micron pore size, coupled to a low-noise pnCDD X-ray detector. In
this paper we describe the expected scientific performance of the MXT
telescope, based on the End-to-End calibration campaign performed in fall 2021,
before the integration of the SVOM payload on the satellite.Comment: 22 pages, 12 figures, accepted for publication in Experimental
Astronom
The Effects Combining Cryocompression Therapy following an Acute Bout of Resistance Exercise on Performance and Recovery
Compression and cold therapy used separately have shown to reduce negative effects of tissue damage. The combining compression and cold therapy (cryocompression) as a single recovery modality has yet to be fully examined. To examine the effects of cryocompression on recovery following a bout of heavy resistance exercise, recreationally resistance trained men (n =16) were recruited, matched, and randomly assigned to either a cryocompression group (CRC) or control group (CON). Testing was performed before and then immediately after exercise, 60 minutes, 24 hours, and 48 hours after a heavy resistance exercise workout (barbell back squats for 4 sets of 6 reps at 80% 1RM, 90 sec rest between sets, stiff legged deadlifts for 4 sets of 8 reps at 1.0 X body mass with 60 sec rest between sets, 4 sets of 10 eccentric Nordic hamstring curls, 45 sec rest between sets). The CRC group used the CRC system for 20-mins of cryocompression treatment immediately after exercise, 24 hours, and 48 hours after exercise. CON sat quietly for 20-mins at the same time points. Muscle damage [creatine kinase], soreness (visual analog scale, 0-100), pain (McGill Pain Q, 0-5), fatigue, sleep quality, and jump power were significantly (p \u3c 0.05) improved for CRC compared to CON at 24 and 48 hours after exercise. Pain was also significantly lower for CRC compared to CON at 60-mins post exercise. These findings show that cryocompression can enhance recovery and performance following a heavy resistance exercise workout
Durability of bioprosthetic aortic valves in patients under the age of 60 years - Rationale and design of the international INDURE registry
Background: There is an ever-growing number of patients requiring aortic valve replacement (AVR). Limited data is available on the long-term outcomes and structural integrity of bioprosthetic valves in younger patients undergoing surgical AVR. Methods: The INSPIRIS RESILIA Durability Registry (INDURE) is a prospective, open-label, multicentre, international registry with a follow-up of 5 years to assess clinical outcomes of patients younger than 60 years who undergo surgical AVR using the INSPIRIS RESILIA aortic valve. INDURE will be conducted across 20-22 sites in Europe and Canada and intends to enrol minimum of 400 patients. Patients will be included if they are scheduled to undergo AVR with or without concomitant root replacement and/or coronary bypass surgery. The primary objectives are to 1) determine VARC-2 defined time-related valve safety at one-year (depicted as freedom from events) and 2) determine freedom from stage 3 structural valve degeneration (SVD) presenting as morphological abnormalities and severe haemodynamic valve degeneration at 5 years. Secondary objectives include the assessment of the haemodynamic performance of the valve, all stages of SVD, potential valve-in-valve procedures, clinical outcomes (in terms of New York Heart Association [NYHA] function class and freedom from valve-related rehospitalisation) and change in patient quality-of-life. Discussion: INDURE is a prospective, multicentre registry in Europe and Canada, which will provide much needed data on the long-term performance of bioprosthetic valves in general and the INSPIRIS RESILIA valve in particular. The data may help to gather a deeper understanding of the longevity of bioprosthetic valves and may expand the use of bioprosthetic valves in patients under the age of 60 years. Trial registration: ClinicalTrials.gov identifier: NCT03666741 (registration received September, 12th, 2018)
- …