361 research outputs found

    The Physical Structure of Protoplanetary Disks: the Serpens Cluster Compared with Other Regions

    Get PDF
    Spectral energy distributions are presented for 94 young stars surrounded by disks in the Serpens Molecular Cloud, based on photometry and Spitzer IRS spectra. Taking a distance to the cloud of 415 pc rather than 259 pc, the distribution of ages is shifted to lower values, in the 1-3 Myr range, with a tail up to 10 Myr. The mass distribution spans 0.2-1.2 Msun, with median mass of 0.7 Msun. The distribution of fractional disk luminosities in Serpens resembles that of the young Taurus Molecular Cloud, with most disks consistent with optically thick, passively irradiated disks in a variety of disk geometries (Ldisk/Lstar ~ 0.1). In contrast, the distributions for the older Upper Scorpius and Eta Chamaeleontis clusters are dominated by optically thin lower luminosity disks (Ldisk/Lstar ~ 0.02). This evolution in fractional disk luminosities is concurrent with that of disk fractions. The actively accreting and non-accreting stars (based on Ha data) in Serpens show very similar distributions in fractional disk luminosities, differing only in the brighter tail dominated by strongly accreting stars. In contrast with a sample of Herbig Ae/Be stars, the T Tauri stars in Serpens do not have a clear separation in fractional disk luminosities for different disk geometries: both flared and flat disks present wider, overlapping distributions. This result is consistent with previous suggestions of a faster evolution for disks around Herbig Ae/Be stars. Furthermore, the results for the mineralogy of the dust in the disk surface do not show any correlation to either stellar and disk characteristics or mean cluster age in the 1-10 Myr range probed here. A possible explanation for the lack of correlation is that the processes affecting the dust within disks have short timescales, happening repeatedly, making it difficult to distinguish long lasting evolutionary effects. [abridged]Comment: ApJ in pres

    Screening of yard long bean (Vigna unguiculata subsp. sesquipedalis (L.) Verdcourt) genotypes for resistance to Colletotrichum gloeosporoides

    Get PDF
    Anthracnose is one of the most destructive fungal diseases caused by Colletotrichumgloeosporoides in yard long bean, leading to complete crop loss at all stages and its partslike hypocotyls, stem, peduncle, flowers, leaves and pods were seriously affected. Few bush type cowpea cultivars have been earlier identified as reliable sources of resistance while trailing types are susceptible, but high yielding. Breeding resistant varieties is suggested as the only practical strategy, especially under hot and humid condition. Fifty-yard-long bean genotypes belonging to bush, semi erect and pole types were screened against anthracnose disease through artificial inoculation under pot culture. The present study identified the resistant varieties of vegetable cowpea through artificial inoculation followed by detached leaf assay. Among the 50 varieties of yard long bean observed, Kanakamony, dual purpose yard long bean was found highly resistant with disease severity of 3.67% followed by Arimbra local

    A submillimeter search for pre- and proto-brown dwarfs in Chamaeleon II

    Full text link
    Context. Chamaeleon II molecular cloud is an active star forming region that offers an excellent opportunity for studying the formation of brown dwarfs in the southern hemisphere. Aims. Our aims are to identify a population of pre- and proto- brown dwarfs (5 sigma mass limit threshold of ~0.015 Msun) and provide information on the formation mechanisms of substellar objects. Methods. We performed high sensitivity observations at 870 microns using the LABOCA bolometer at the APEX telescope towards an active star forming region in Chamaeleon II. The data are complemented with an extensive multiwavelength catalogue of sources from the optical to the far-infrared to study the nature of the LABOCA detections. Results. We detect fifteen cores at 870 microns, and eleven of them show masses in the substellar regime. The most intense objects in the surveyed field correspond to the submillimeter counterparts of the well known young stellar objects DK Cha and IRAS 12500-7658. We identify a possible proto-brown dwarf candidate (ChaII-APEX-L) with IRAC emission at 3.6 and 4.5 microns. Conclusions. Our analysis indicates that most of the spatially resolved cores are transient, and that the point-like starless cores in the sub-stellar regime (with masses between 0.016 Msun and 0.066 Msun) could be pre-brown dwarfs cores gravitationally unstable if they have radii smaller than 220 AU to 907 AU (1.2" to 5" at 178 pc) respectively for different masses. ALMA observations will be the key to reveal the energetic state of these pre-brown dwarfs candidates.Comment: 11 pages, 6 figure

    The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. XI. Lupus Observed With IRAC and MIPS

    Full text link
    We present c2d Spitzer/IRAC observations of the Lupus I, III and IV dark clouds and discuss them in combination with optical and near-infrared and c2d MIPS data. With the Spitzer data, the new sample contains 159 stars, 4 times larger than the previous one. It is dominated by low- and very-low mass stars and it is complete down to M ≈\approx 0.1M⊙_\odot. We find 30-40 % binaries with separations between 100 to 2000 AU with no apparent effect in the disk properties of the members. A large majority of the objects are Class II or Class III objects, with only 20 (12%) of Class I or Flat spectrum sources. The disk sample is complete down to ``debris''-like systems in stars as small as M ≈\approx 0.2 M⊙_\odot and includes sub-stellar objects with larger IR excesses. The disk fraction in Lupus is 70 -- 80%, consistent with an age of 1 -- 2 Myr. However, the young population contains 20% optically thick accretion disks and 40% relatively less flared disks. A growing variety of inner disk structures is found for larger inner disk clearings for equal disk masses. Lupus III is the most centrally populated and rich, followed by Lupus I with a filamentary structure and by Lupus IV, where a very high density core with little star-formation activity has been found. We estimate star formation rates in Lupus of 2 -- 10 M⊙_\odot Myr−1^{-1} and star formation efficiencies of a few percent, apparently correlated with the associated cloud masses.Comment: Accepted for publication in the ApJS. Contains 101 pages, 23 figures, and 13 tables. A version with full resolution figures can be found at http://peggysue.as.utexas.edu/SIRTF/PAPERS/pap102.pub.pd

    STUDY ON ANTIMICROBIAL RESISTANCE PATTERN IN A TERTIARY CARE HOSPITAL – AN OBSERVATIONAL RETROSPECTIVE STUDY

    Get PDF
    Objective: The aim of the study was to monitor the magnitude and trends in antimicrobial resistance through surveillance programs and bacteriological diagnostic methods. Methods: The study research has performed a retrospective observational study for period of 6 months (Dec 2019–June 2020) to determine the antimicrobial susceptibility pattern on cultures of various specimens at Vivekanandha Medical Care Hospital. The resultant data were computed in Microsoft Excel. Analyses were expressed as the total number, frequencies, and percentage. Results: A total of 110 culture and sensitivity reports were collected from microbiology departments. Among the culture report, 84% accounted for gram-negative and 16% for Gram-positive organisms. Out of eight specimens, 15 different bacteria were identified and the most common bacteria were Klebsiella pneumonia (25%), E. coli (14%), Staphylococcus aureus (13%), and Pseudomonas aeruginosa (12%). Conclusion: The interferences from the present study can help in bridging the gap in future educations, training, and adequate decision-making

    Herschel Observations of the T Cha Transition Disk: Constraining the Outer Disk Properties

    Get PDF
    T Cha is a nearby (d similar to 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 mu m) of T Cha from the "Dust, Ice, and Gas in Time" Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 mu m without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond similar to 40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Cha's outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.DIGIT Herschel Open Time Key ProgramNASAAlexander von Humboldt FoundationEuropean CommissionAgence Nationale pour la Recherche of France PERG06-GA-2009-256513, ANR-07-BLAN-0221, ANR-2010-JCJC-0504-01CNRS/INSU, FranceAstronom

    The Herschel Digit Survey Of Weak-Line T Tauri Stars: Implications For Disk Evolution And Dissipation

    Get PDF
    As part of the "Dust, Ice, and Gas In Time (DIGIT)" Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 mu m) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 "pre-transitional" object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 mu m Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 mu m fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F-70/F-70,(*) greater than or similar to 5-15 and L-disk/L-* greater than or similar to 10(-3) to 10(-4) can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.NASA through JPL/CaltechNASA through the Sagan Fellowship ProgramEuropean Commission PERG06-GA-2009-256513Agence Nationale pour la Recherche (ANR) of France ANR-2010-JCJC-0504-01CFHT 11AH96Astronom

    Nature Of Transition Circumstellar Disks. I. The Ophiuchus Molecular Cloud

    Get PDF
    We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d similar to 125 pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40 M(JUP) and accretion rates ranging from <10(-11) to 10(-7) M(circle dot) yr(-1), but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5 M(JUP)) and negligible accretion (<10(-11) M(circle dot) yr(-1)), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10(-3) and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.NASA 1224608, 1230782, 1230779, 1407FONDECYT 1061199Basal CATA PFB 06/09ALMA FUND 31070021ALMA-Conicyt FUND 31060010National Science Foundation AST0-808144Spitzer Space Telescope Legacy Science ProgramAstronom

    Behaviour of Cold-Formed Steel Semi Rigid Connections

    Get PDF
    Ductility and inelastic performance are important considerations in aseismic design of buildings. The dissipation of energy due to inelastic deformation is predominantly required in the connections like beam column joints. It is necessary to design these joints as semi rigid for its economic and structural benefits. Semi-rigid connections have highly nonlinear behaviour that makes the analysis and design of frames difficult and complicated. Steel structures are highly regarded for their seismic performance. It is required to understand and study the inelastic behavior of steel connections which would help in an economical and simpler design. This paper involves the modeling of deformational behaviour of a cold formed steel connection in a finite element software simulating the real time behavior. The ultimate moment and rotation is studied for different semi rigid connections after validation of the model
    • …
    corecore