1,085 research outputs found
On rapid migration and accretion within disks around supermassive black holes
Galactic nuclei should contain a cluster of stars and compact objects in the
vicinity of the central supermassive black hole due to stellar evolution, minor
mergers and gravitational dynamical friction. By analogy with protoplanetary
migration, nuclear cluster objects (NCOs) can migrate in the accretion disks
that power active galactic nuclei by exchanging angular momentum with disk gas.
Here we show that an individual NCO undergoing runaway outward migration
comparable to Type III protoplanetary migration can generate an accretion rate
corresponding to Seyfert AGN or quasar luminosities. Multiple migrating NCOs in
an AGN disk can dominate traditional viscous disk accretion and at large disk
radii, ensemble NCO migration and accretion could provide sufficient heating to
prevent the gravitational instability from consuming disk gas in star
formation. The magnitude and energy of the X-ray soft excess observed at
~0.1-1keV in Seyfert AGN could be explained by a small population of
~10^{2}-10^{3} accreting stellar mass black holes or a few ULXs. NCO migration
and accretion in AGN disks are therefore extremely important mechanisms to add
to realistic models of AGN disks.Comment: 6 pages, 2 figures, MNRAS Letters (accepted
On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening
We assess the contribution of dynamical hardening by direct three-body
scattering interactions to the rate of stellar-mass black hole binary (BHB)
mergers in galactic nuclei. We derive an analytic model for the single-binary
encounter rate in a nucleus with spherical and disk components hosting a
super-massive black hole (SMBH). We determine the total number of encounters
needed to harden a BHB to the point that inspiral due to
gravitational wave emission occurs before the next three-body scattering event.
This is done independently for both the spherical and disk components. Using a
Monte Carlo approach, we refine our calculations for to include
gravitational wave emission between scattering events. For astrophysically
plausible models we find that typically 10.
We find two separate regimes for the efficient dynamical hardening of BHBs:
(1) spherical star clusters with high central densities, low velocity
dispersions and no significant Keplerian component; and (2) migration traps in
disks around SMBHs lacking any significant spherical stellar component in the
vicinity of the migration trap, which is expected due to effective orbital
inclination reduction of any spherical population by the disk. We also find a
weak correlation between the ratio of the second-order velocity moment to
velocity dispersion in galactic nuclei and the rate of BHB mergers, where this
ratio is a proxy for the ratio between the rotation- and dispersion-supported
components. Because disks enforce planar interactions that are efficient in
hardening BHBs, particularly in migration traps, they have high merger rates
that can contribute significantly to the rate of BHB mergers detected by the
advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA
Linear feedback control of transient energy growth and control performance limitations in subcritical plane Poiseuille flow
Suppression of the transient energy growth in subcritical plane Poiseuille
flow via feedback control is addressed. It is assumed that the time derivative
of any of the velocity components can be imposed at the walls as control input,
and that full-state information is available. We show that it is impossible to
design a linear state-feedback controller that leads to a closed-loop flow
system without transient energy growth.
In a subsequent step, full-state feedback controllers -- directly targeting
the transient growth mechanism -- are designed, using a procedure based on a
Linear Matrix Inequalities approach. The performance of such controllers is
analyzed first in the linear case, where comparison to previously proposed
linear-quadratic optimal controllers is made; further, transition thresholds
are evaluated via Direct Numerical Simulations of the controlled
three-dimensional Poiseuille flow against different initial conditions of
physical interest, employing different velocity components as wall actuation.
The present controllers are effective in increasing the transition thresholds
in closed loop, with varying degree of performance depending on the initial
condition and the actuation component employed
The Kinematics and Physical Conditions pf the Ionized Gas in Markarian 509. II. STIS Echelle Observations
We present observations of the UV absorption lines in the luminous Seyfert 1
galaxy Mrk 509, obtained with the medium resolution (lambda/Delta-lambda ~
40,000) echelle gratings of the Space Telescope Imaging Spectrograph on the
Hubble Space Telescope. The spectra reveal the presence of eight kinematic
components of absorption in Ly-alpha, C IV, and N V, at radial velocities of
-422, -328, -259, -62, -22, +34, +124, and +210 km s^-1 with respect to an
emission-line redshift of z = 0.03440, seven of which were detected in an
earlier Far Ultraviolet Spectrographic Explorer (FUSE) spectrum. The component
at -22 km s^-1 also shows absorption by Si IV. The covering factor and velocity
width of the Si IV lines were lower than those of the higher ionization lines
for this component, which is evidence for two separate absorbers at this
velocity. We have calculated photoionization models to match the UV column
densities in each of these components. Using the predicted O VI column
densities, we were able to match the O VI profiles observed in the FUSE
spectrum. Based on our results, none of the UV absorbers can produce the X-ray
absorption seen in simultaneous Chandra observations; therefore, there must be
more highly ionized gas in the radial velocity ranges covered by the UV
absorbers.Comment: 30 pages, three figures (Figure 1 is in color). Accepted for
publication in the Astrophysical Journa
Emotion perception and electrophysiological correlates in Huntington\u27s disease
Objective This study aimed to characterise, emotion perception deficits in symptomatic Huntington\u27s disease (HD) via the use of event-related potentials (ERPs). Methods ERP data were recorded during a computerised facial expression task in 11 HD participants and 11 matched controls. Expression (scrambled, neutral, happy, angry, disgust) classification accuracy and intensity were assessed. Relationships between ERP indices and clinical disease characteristics were also examined. Results Accuracy was significantly lower for HD relative to controls, due to reduced performance for neutral, angry and disgust (but not happy) faces. Intensity ratings did not differ between groups. HD participants displayed significantly reduced visual processing amplitudes extending across pre-face (P100) and face-specific (N170) processing periods, whereas subsequent emotion processing amplitudes (N250) were similar across groups. Face-specific and emotion-specific derivations of the N170 and N250 (\u27neutral minus scrambled\u27 and \u27each emotion minus neutral\u27, respectively) did not differ between groups. Conclusions Our data suggest that the facial emotion recognition performance deficits in HD are primarily related to neural degeneration underlying \u27generalised\u27 visual processing, rather than face or emotional specific processing. Significance ERPs are a useful tool to separate functionally discreet impairments in HD, and provide an important avenue for biomarker application that could more-selectively track disease progression
- …