5 research outputs found

    Accelerating functional gene discovery in osteoarthritis

    Get PDF
    Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease

    Bone Matrix Composition following PTH Treatment Is Not Dependent on Sclerostin 1 Status

    No full text
    Sclerostin and parathyroid hormones are strong negative and positive regulators of bone formation, respectively. The anabolic response induced by intermittent (iPTH) treatment is sclerostin status-dependent. However, the interaction between sclerostin and iPTH at the matrix level is unknown. The goal of the current study was to determine if iPTH treatment affects matrix composition and, if so, whether these effects are dependent on sclerostin status. Humeral trabecular and cortical bone sites from 16 week old male wild-type (WT) and sclerostin knockout (KO) mice, which had been treated with vehicle or iPTH from age 10–16 weeks, were examined by micro-computed tomography (µCT) to measure bone volume, backscatter scanning electron microscopy (bSEM) to assess global mineralization, and Fourier transform infrared microspectroscopy (FTIRM) to examine matrix composition (mineral-to-matrix ratio, crystallinity, collagen cross-link ratio, and carbonate substitution). The FTIRM measurements were restricted to the tissue formed during the 6-week treatment period. iPTH treatment led to increased trabecular bone volume (p < 0.001) and this effect was much greater in KO mice than WT mice (interaction effect, p < 0.001). iPTH treatment led to reduced trabecular crystallinity (p = 0.047), increased cortical bone area (p < 0.001), decreased cortical bone crystallinity (p = 0.002) and increased cortical bone collagen cross-linking (p = 0.028) to similar degrees in both WT and KO mice. Compared to WT mice, sclerostin KO mice had higher trabecular and cortical bone mass (p < 0.001) and lower mineral-to-matrix ratio in the trabecular (p = 0.010) and cortical (p = 0.016) compartments. Thus, iPTH-induced changes in bone mass are dependent upon sclerostin status in the trabecular compartment, but not in the cortical compartment. In contrast, iPTH-induced changes in matrix composition are sclerostin-independent in both trabecular and cortical compartments

    Permeation of human plasma lipoproteins in human carotid endarterectomy tissues: measurement by optical coherence tomography

    No full text
    Atherosclerosis is an inflammatory process occurring in arterial tissue, involving the subintimal accumulation of LDL. Measurement of the rate at which LDL and other lipoproteins, such as HDL and VLDL, enter and exit the tissue can provide insight into the mechanisms involved in the development of atherosclerotic lesions. Permeation of VLDL, LDL, HDL, and glucose was measured for both normal and atherosclerotic human carotid endarterectomy tissues (CEA) at 20°C and 37°C using optical coherence tomography (OCT). The rates for LDL permeation through normal CEA tissue were (3.16 ± 0.37) × 10−5 cm/s at 20°C and (4.77 ± 0.48) × 10−5 cm/s at 37°C, significantly greater (P < 0.05) than the rates for atherosclerotic CEA tissue at these temperatures [(1.97 ± 0.34) × 10−5 cm/s at 20°C and (2.01 ± 0.23) × 10−5 cm/s at 37°C]. This study effectively used OCT to measure the rates at which naturally occurr­ing lipoproteins enter both normal and diseased carotid intimal tissue
    corecore