261 research outputs found

    Can video playback provide social information for foraging blue tits?

    Get PDF
    Video playback is becoming a common method for manipulating social stimuli in experiments. Parid tits are one of the most commonly studied groups of wild birds. However, it is not yet clear if tits respond to video playback or how their behavioural responses should be measured. Behaviours may also differ depending on what they observe demonstrators encountering. Here we present blue tits (Cyanistes caeruleus) videos of demonstrators discovering palatable or aversive prey (injected with bitter-tasting Bitrex) from coloured feeding cups. First we quantify variation in demonstrators' responses to the prey items: aversive prey provoked high rates of beak wiping and head shaking. We then show that focal blue tits respond differently to the presence of a demonstrator on a video screen, depending on whether demonstrators discover palatable or aversive prey. Focal birds faced the video screen more during aversive prey presentations, and made more head turns. Regardless of prey type, focal birds also hopped more frequently during the presence of a demonstrator (compared to a control video of a different coloured feeding cup in an empty cage). Finally, we tested if demonstrators' behaviour affected focal birds' food preferences by giving individuals a choice to forage from the same cup as a demonstrator, or from the cup in the control video. We found that only half of the individuals made their choice in accordance to social information in the videos, i.e., their foraging choices were not different from random. Individuals that chose in accordance with a demonstrator, however, made their choice faster than individuals that chose an alternative cup. Together, our results suggest that video playback can provide social cues to blue tits, but individuals vary greatly in how they use this information in their foraging decisions.Peer reviewe

    Social information use by predators : expanding the information ecology of prey defences

    Get PDF
    Social information use is well documented across the animal kingdom, but how it influences ecological and evolutionary processes is only just beginning to be investigated. Here we evaluate how social transmission may influence species interactions and potentially change or create novel selection pressures by focusing on predator-prey interactions, one of the best studied examples of species coevolution. There is extensive research into how prey can use social information to avoid predators, but little synthesis of how social transmission among predators can influence the outcome of different stages of predation. Here we review evidence that predators use social information during 1) encounter, 2) detection, 3) identification, 4) approach, 5) subjugation and 6) consumption. We use this predation sequence framework to evaluate the implications of social information use on current theoretical predictions about predator-prey dynamics, and find that social transmission has the potential to alter selection pressures for prey defences at each predation stage. This suggests that considering social interactions can help answer open questions about species coevolution, and also predict how populations and communities respond to rapid human-induced changes in the environment.Peer reviewe

    Evolved high aerobic capacity has context-specific effects on gut microbiota

    Get PDF
    Publisher Copyright: Copyright © 2022 Hanhimäki, Watts, Koskela, Koteja, Mappes and Hämäläinen.Gut microbiota is expected to coevolve with the host's physiology and may play a role in adjusting the host's energy metabolism to suit the host's environment. To evaluate the effects of both evolved host metabolism and the environmental context in shaping the gut microbiota, we used a unique combination of (1) experimental evolution to create selection lines for a fast metabolism and (2) a laboratory-to-field translocation study. Mature bank voles Myodes glareolus from lines selected for high aerobic capacity (A lines) and from unselected control (C lines) were released into large (0.2 ha) outdoor enclosures for longitudinal monitoring. To examine whether the natural environment elicited a similar or more pronounced impact on the gut microbiota of the next generation, we also sampled the field-reared offspring. The gut microbiota were characterized using 16S rRNA amplicon sequencing of fecal samples. The artificial selection for fast metabolism had minimal impact on the gut microbiota in laboratory conditions but in field conditions, there were differences between the selection lines (A lines vs. C lines) in the diversity, community, and resilience of the gut microbiota. Notably, the selection lines differed in the less abundant bacteria throughout the experiment. The lab-to-field transition resulted in an increase in alpha diversity and an altered community composition in the gut microbiota, characterized by a significant increase in the relative abundance of Actinobacteria and a decrease of Patescibacteria. Also, the selection lines showed different temporal patterns in changes in microbiota composition, as the average gut microbiota alpha diversity of the C lines, but not A lines, was temporarily reduced during the initial transition to the field. In surviving young voles, the alpha diversity of gut microbiota was significantly higher in A-line than C-line voles. These results indicate that the association of host metabolism and gut microbiota is context-specific, likely mediated by behavioral or physiological modifications in response to the environment.Peer reviewe

    Social information use about novel aposematic prey is not influenced by a predator's previous experience with toxins

    Get PDF
    Aposematism is an effective antipredator strategy. However, the initial evolution and maintenance of aposematism are paradoxical because conspicuous prey are vulnerable to attack by naive predators. Consequently, the evolution of aposematic signal mimicry is also difficult to explain. The cost of conspicuousness can be reduced if predators learn about novel aposematic prey by observing another predator's response to that same prey. On the other hand, observing positive foraging events might also inform predators about the presence of undefended mimics, accelerating predation on both mimics and their defended models. It is currently unknown, however, how personal and social information combines to affect the fitness of aposematic prey. For example, does social information become more useful when predators have already ingested toxins and need to minimize further consumption? We investigated how toxin load influences great tits' (Parus major) likelihood to use social information about novel aposematic prey, and how it alters predation risk for undefended mimics. Birds were first provided with mealworms injected with bitter-tasting chloroquine (or a water-injected control), before information about a novel unpalatable prey phenotype was provided via video playback (either prey alone, or of a great tit tasting the noxious prey). An experimentally increased toxin load made great tits warier to attack prey, but only if they lacked social information about unpalatable prey. Socially educated birds consumed fewer aposematic prey relative to a cryptic phenotype, regardless of toxin load. In contrast, after personally experiencing aposematic prey, birds ignored social information about palatable mimics and were hesitant to sample them. Our results suggest that social information use by predators could be a powerful force in facilitating the evolution of aposematism as it reduces predation pressure on aposematic prey, regardless of a predator's toxin load. Nevertheless, observing foraging events of others is unlikely to alter frequency-dependent dynamics among models and mimics, although this may depend on predators having recent personal experience of the model's unpalatability. A plain language summary is available for this article.Peer reviewe

    The effect of social information from live demonstrators compared to video playback on blue tit foraging decisions

    Get PDF
    Video playback provides a promising method to study social interactions, and the number of video playback experiments has been growing in recent years. Using videos has advantages over live individuals as it increases the repeatability of demonstrations, and enables researchers to manipulate the features of the presented stimulus. How observers respond to video playback might, however, differ among species, and the efficacy of video playback should be validated by investigating if individuals' responses to videos are comparable to their responses to live demonstrators. Here, we use a novel foraging task to compare blue tits' (Cyanistes caeruleus) responses to social information from a live conspecific vs video playback. Birds first received social information about the location of food, and were then presented with a three-choice foraging task where they could search for food from locations marked with different symbols (cross, square, plain white). Two control groups saw only a foraging tray with similar symbols but no information about the location of food. We predicted that socially educated birds would prefer the same location where a demonstrator had foraged, but we found no evidence that birds copied a demonstrator's choice, regardless of how social information was presented. Social information, however, had an influence on blue tits' foraging choices, as socially educated birds seemed to form a stronger preference for a square symbol (against two other options, cross and plain white) than the control birds. Our results suggest that blue tits respond to video playback of a conspecific similarly as to a live bird, but how they use this social information in their foraging decisions, remains unclear.Peer reviewe

    Advantage of rare infanticide strategies in an invasion experiment of behavioural polymorphism

    Get PDF
    Killing conspecific infants (infanticide) is among the most puzzling phenomena in nature. Stable polymorphism in such behaviour could be maintained by negative frequency-dependent selection (benefit of rare types). However, it is currently unknown whether there is genetic polymorphism in infanticidal behaviour or whether infanticide may have any fitness advantages when rare. Here we show genetic polymorphism in non-parental infanticide. Our novel invasion experiment confirms negative frequency-dependent selection in wild bank vole populations, where resource benefits allow an infanticidal strategy to invade a population of non-infanticidal individuals. The results show that infanticidal behaviour is highly heritable with genetic correlation across the sexes. Thus, a positive correlative response in male behaviour is expected when selection operates on females only and vice versa. Our results, on one hand, demonstrate potential benefits of infanticide, and on the other, they open a new perspective of correlative evolution of infanticide in females and males

    UV-Deprived Coloration Reduces Success in Mate Acquisition in Male Sand Lizards (Lacerta agilis)

    Get PDF
    Background: Recent work on animal signals has revealed a wide occurrence of UV signals in tetrapods, in particular birds, but also in lizards (and perhaps other Squamate reptiles). Our previous work on the Swedish sand lizard (Lacerta agilis) has verified, both in correlative selection analyses in the wild and with laboratory and field experiments, the importance of the green ‘badge ’ on the body sides of adult males for securing mating opportunities, probably mostly through deterring rival males rather than attracting females. The role of UV in communication has, however, never been examined. Methodology/Principal Findings: Here we show that when measured immediately after spring skin shedding, there is also signaling in the UV. By UV-depriving the signal (reflectance) with sun block chemicals fixated with permeable, harmless spray dressing, we show that males in the control group (spray dressing only) had significantly higher success in mate acquisition than UV-deprived males. Conclusions/Significance: These results suggest that at least two colour traits in sand lizards, badge area and UV, contribute to rival deterrence and/or female choice on UV characters, which elevates success in mate acquisition in UV intact male sand lizards
    • …
    corecore