30 research outputs found
Elimination of a group II intron from a plastid gene causes a mutant phenotype
Group II introns are found in bacteria and cell organelles (plastids, mitochondria) and are thought to represent the evolutionary ancestors of spliceosomal introns. It is generally believed that group II introns are selfish genetic elements that do not have any function. Here, we have scrutinized this assumption by analyzing two group II introns that interrupt a plastid gene (ycf3) involved in photosystem assembly. Using stable transformation of the plastid genome, we have generated mutant plants that lack either intron 1 or intron 2 or both. Interestingly, the deletion of intron 1 caused a strong mutant phenotype. We show that the mutants are deficient in photosystem I and that this deficiency is directly related to impaired ycf3 function. We further show that, upon deletion of intron 1, the splicing of intron 2 is strongly inhibited. Our data demonstrate that (i) the loss of a group II intron is not necessarily phenotypically neutral and (ii) the splicing of one intron can depend on the presence of another
Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism
The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4+ assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu
The rice ALS3 encoding a novel pentatricopeptide repeat protein is required for chloroplast development and seedling growth
Two interacting PPR proteins are major Arabidopsis editing factors in plastid and mitochondria
RNA editing is converting hundreds of cytosines into uridines during organelle gene expression of land plants. The pentatricopeptide repeat (PPR) proteins are at the core of this posttranscriptional RNA modification. Even if a PPR protein defines the editing site, a DYW domain of the same or another PPR protein is believed to catalyze the deamination. To give insight into the organelle RNA editosome, we performed tandem affinity purification of the plastidial CHLOROPLAST BIOGENESIS 19 (CLB19) PPR editing factor. Two PPR proteins, dually targeted to mitochondria and chloroplasts, were identified as potential partners of CLB19. These two proteins, a P-type PPR and a member of a small PPR-DYW subfamily, were shown to interact in yeast. Insertional mutations resulted in embryo lethality that could be rescued by embryo-specific complementation. A transcriptome analysis of these complemented plants showed major editing defects in both organelles with a very high PPR type specificity, indicating that the two proteins are core members of E+-type PPR editosomes
Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively
Arabidopsis mTERF15 Is Required for Mitochondrial nad2 Intron 3 Splicing and Functional Complex I Activity
The Credibility of European Bankss Risk-Weighted Capital: Structural Differences or National Segmentations?
RNA editing in mitochondrial trans-introns is required for splicing
In plant mitochondria, gene expression of translatable mRNAs is a complex process with two critical steps, RNA editing and splicing. We studied the role of RNA editing on non-coding regions of the mat-r-nad1e-nad5c transcript from wheat mitochondria. This RNA contains two trans-introns, 3'-nad1-I4 and 3'-nad5-I2, involved in different trans-splicing events, ensuring the association of nad1d-nad1e and nad5b-nad5c exons from nad1 and nad5 mRNAs respectively. The C-to-U editing changes studied here affect homologous positions on 3'-nad1-I4 and 3'-nad5-I2. It is proposed that these base changes are necessary to place an Adenosine residue in a bulging conformation characteristic of domain VI (D6) from group II introns. In this work, we investigated the role of RNA editing events on 3'-nad1-I4 and 3'-nad5-I2 in the trans-splicing process using in vivo and in organello approaches. When the branched intermediates formed during the splicing process were analyzed, the C residues from D6 intron domains from 3'-nad1-I4 and 3'-nad5-I2 were found changed to U, suggesting that RNA editing of these residues could be mandatory for splicing. This assumption was tested by expressing recombinant mat-r-nad1e transgenes introduced into mitochondria by electroporation. Mutation of the editing target residue dramatically affected trans-splicing. Interestingly, the exon joining efficiency was not recovered by compensatory mutations, suggesting that the role of RNA editing is not confined to the restoration of the secondary structure of domain D6 of the intron. Our results strongly support the hypothesis that RNA editing in trans-introns precedes maturation, and is required for the splicing reaction. In addition, this is the first report using an in organello approach to study the trans-splicing process, opening the way to future studies of this peculiar mechanism
Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications
DOI/ 10.1101/gr.2544504International audienc
