322 research outputs found

    The neutron polaron as a constraint on nuclear density functionals

    Full text link
    We study the energy of an impurity (polaron) that interacts strongly in a sea of fermions when the effective range of the impurity-fermion interaction becomes important, thereby mapping the Fermi polaron of condensed matter physics and ultracold atoms to strongly interacting neutrons. We present Quantum Monte Carlo results for this neutron polaron, and compare these with effective field theory calculations that also include contributions beyond the effective range. We show that state-of-the-art nuclear density functionals vary substantially and generally underestimate the neutron polaron energy. Our results thus provide constraints for adjusting the time-odd components of nuclear density functionals to better characterize polarized systems.Comment: 5 pages, 3 figures; v2 corresponds to the published versio

    Particle-Number Restoration within the Energy Density Functional formalism: Nonviability of terms depending on noninteger powers of the density matrices

    Full text link
    We discuss the origin of pathological behaviors that have been recently identified in particle-number-restoration calculations performed within the nuclear energy density functional framework. A regularization method that removes the problematic terms from the multi-reference energy density functional and which applies (i) to any symmetry restoration- and/or generator-coordinate-method-based configuration mixing calculation and (ii) to energy density functionals depending only on integer powers of the density matrices, was proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041] and implemented for particle-number restoration calculations in [M. Bender, T. Duguet, D. Lacroix, arXiv:0809.2045]. In the present paper, we address the viability of non-integer powers of the density matrices in the nuclear energy density functional. Our discussion builds upon the analysis already carried out in [J. Dobaczewski \emph{et al.}, Phys. Rev. C \textbf{76}, 054315 (2007)]. First, we propose to reduce the pathological nature of terms depending on a non-integer power of the density matrices by regularizing the fraction that relates to the integer part of the exponent using the method proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041]. Then, we discuss the spurious features brought about by the remaining fractional power. Finally, we conclude that non-integer powers of the density matrices are not viable and should be avoided in the first place when constructing nuclear energy density functionals that are eventually meant to be used in multi-reference calculations.Comment: 17 pages, 12 figures, accepted for publication in PR

    Isovector splitting of nucleon effective masses, ab-initio benchmarks and extended stability criteria for Skyrme energy functionals

    Get PDF
    We study the effect of the splitting of neutron and proton effective masses with isospin asymmetry on the properties of the Skyrme energy density functional. We discuss the ability of the latter to predict observable of infinite matter and finite nuclei, paying particular attention to controlling the agreement with ab-initio predictions of the spin-isospin content of the nuclear equation of state, as well as diagnosing the onset of finite size instabilities, which we find to be of critical importance. We show that these various constraints cannot be simultaneously fulfilled by the standard Skyrme force, calling at least for an extension of its P-wave part.Comment: 17 pages, 9 figures; Minor changes, references added; Accepted for publication in Phys.Rev.

    Giant hiatal hernias

    Get PDF
    Dyspnoea is most often caused by disorders of the respiratory and/or cardiovascular systems. Much less often it is brought aboutby the displacement of abdominal organs into the thoracic cage. Hiatal hernias may give rise to diagnostic difficulties, as bothclinical and radiological symptoms suggest different disorders. Computed tomography is the method of choice when makinga diagnosis.We have presented a series of 7 cases of giant hiatal hernias, each with a varying course of the disease, clinical symptoms,radiological features and prognoses.In two of the cases, the hernias were of a post-traumatic nature. Four cases of large diaphragmatic hernias were found in elderlypatients (over 90 years old). An advanced age and numerous coexisting chronic diseases disqualified most of the patients fromsurgical treatment despite the hernias’ large sizes. In only one case was fundoplication performed with a good end result. Twopatients died, and an extensive hernia was the cause of one of the deaths. Upper gastrointestinal symptoms were present onlyin a few of the patients.An early diagnosis of giant hiatal hernia is crucial for the patients to undergo prompt corrective surgeries

    The tensor part of the Skyrme energy density functional. I. Spherical nuclei

    Get PDF
    We perform a systematic study of the impact of the J^2 tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations, which covers a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants, with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of charge radii. Our main conclusion is that the currently used central and spin-orbit parts of the Skyrme energy density functional are not flexible enough to allow for the presence of large tensor terms.Comment: 38 pages, 36 figures; Minor correction

    Tensor part of the Skyrme energy density functional. II: Deformation properties of magic and semi-magic nuclei

    Full text link
    We study systematically the impact of the time-even tensor terms of the Skyrme energy density functional, i.e. terms bilinear in the spin-current tensor density, on deformation properties of closed shell nuclei corresponding to 20, 28, 40, 50, 82, and 126 neutron or proton shell closures. We compare results obtained with three different families of Skyrme parameterizations whose tensor terms have been adjusted on properties of spherical nuclei: (i) TIJ interactions proposed in the first paper of this series [T. Lesinski et al., Phys. Rev. C 76, 014312 (2007)] which were constructed through a complete readjustment of the rest of the functional (ii) parameterizations whose tensor terms have been added perturbatively to existing Skyrme interactions, with or without readjusting the spin-orbit coupling constant. We analyse in detail the mechanisms at play behind the impact of tensor terms on deformation properties and how studying the latter can help screen out unrealistic parameterizations. It is expected that findings of the present paper are to a large extent independent of remaining deficiencies of the central and spin-orbit interactions, and will be of great value for the construction of future, improved energy functionals.Comment: 32 pages revte

    Microscopic evaluation of the pairing gap

    Full text link
    We discuss the relevant progress that has been made in the last few years on the microscopic theory of the pairing correlation in nuclei and the open problems that still must be solved in order to reach a satisfactory description and understanding of the nuclear pairing. The similarities and differences with the nuclear matter case are emphasized and described by few illustrative examples. The comparison of calculations of different groups on the same set of nuclei show, besides agreements, also discrepancies that remain to be clarified. The role of the many-body correlations, like screening, that go beyond the BCS scheme, is still uncertain and requires further investigation.Comment: 21 pages,7 figures; minor modification, accepted for publication in J. Phys.

    Energy density functional on a microscopic basis

    Full text link
    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, on the contrary, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter Equation of State and the distinct features of finite size effects proper of nuclei.Comment: 20 pages, 6 figures,Contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Pan-European sustainable forest management indicators for assessing Climate-Smart Forestry in Europe

    Get PDF
    The increasing demand for innovative forest management strategies to adapt to and mitigate climate change and benefit forest production, the so-called Climate-Smart Forestry, calls for a tool to monitor and evaluate their implementation and their effects on forest development over time. The pan-European set of criteria and indicators for sustainable forest management is considered one of the most important tools for assessing many aspects of forest management and sustainability. This study offers an analytical approach to selecting a subset of indicators to support the implementation of Climate-Smart Forestry. Based on a literature review and the analytical hierarchical approach, 10 indicators were selected to assess, in particular, mitigation and adaptation. These indicators were used to assess the state of the Climate-Smart Forestry trend in Europe from 1990 to 2015 using data from the reports on the State of Europe's Forests. Forest damage, tree species composition, and carbon stock were the most important indicators. Though the trend was overall positive with regard to adaptation and mitigation, its evaluation was partly hindered by the lack of data. We advocate for increased efforts to harmonize international reporting and for further integrating the goals of Climate-Smart Forestry into national-and European-level forest policy making
    corecore