166 research outputs found

    Approximate Prediction of Gas-Solid Conversion in Fluidized Bed Reactors

    Get PDF
    A simple method is proposed to evaluate the performance of fluidized bed reactors where an nth-order gas-solid reaction occurs. The method takes into account the fluid dynamics of the fluidized bed by a two-phase flow model and the rates of diffusion in the solid reactant particles (internal and external) by a simple particle model. Approximate analytical expressions are derived in terms of three effectiveness factors: interphasic, external and intraparticle. These account for the contribution of fluid-dynamic and diffusional resistances to the overall mass-transfer resistance. Gas conversion is expressed in terms of four dimensionless governing quantities and the reaction order, in this way facilitating computations. Limiting cases of the general solution are discussed by comparison with analytical solutions found in literature. The methodology can be applied to catalytic or non-catalytic systems under isothermal conditions, where one heterogeneous reaction is involved

    Fluid dynamic analysis of dual fluidized bed gasifier for solar applications

    Get PDF
    A hydrodynamic model of a dual fluidized bed gasifier (DFBG) is developed and its predictions are compared with measurements of solids flux and pressure profiles from a cold flow model (CFM). Then, the performance of a DFBG gasifier is theoretically analyzed in terms of solids circulation and solids distribution under changes in riser and loop seal aeration, solids inventory and particle size, and a sensitivity analysis is made to delimit the model prediction capability. Furthermore, the model is applied to analyze the effects of key design aspects of DFBG, such as the relative size of riser and gasifier, the connection between both units, the circulation rate of solids and their distribution around the system. The model is further used to extend the DFBG operation with external solar energy carried by heated solid particles, i.e. to design solar DFBG (SDFBG). The analysis is focused on the performance with high solids inventory in the gasifier to increase the char conversion (operation with a large solar share) and the control of solids circulation to meet the heat demand of the gasifier with the availability of solar energy. The operation with large solids inventory in the gasifier requires the size of the gasifier to increase considerably compared to that of the conventional DFBG. The substitution of the connection pipe between the riser and the bubbling bed (current design in commercial DFBG) by a lower loop seal enables better control of the solids circulation, thus, benefiting the solar design

    Monitoring of bed material in a biomass fluidized bed boiler using an electronic tongue

    Get PDF
    The thermal conversion of biomass fuel mixes in fluidized beds can cause agglomeration. To counteract agglomeration, bed material is gradually exchanged with virgin bed material, and this results in increased disposal of used bed material. Furthermore, the bed material exchange represents a costly option, as it involves a cost for virgin bed material, for landfill, and for unplanned downtime of the plant. This paper presents a novel method for the evaluation of bed material quality: the electronic tongue (ET). Evaluation of bed material quality can contribute toward decreasing the cost of unnecessary exchanges of bed material. The proposed method was tested on bed material sampled on an almost daily basis from a commercial fluidized bed boiler during several months of operation. A two-electrode ET was used for the evaluation of the bed material quality. The analysis relied on pulsed voltammetry measurements and multivariate data analysis with Principal Component Analysis (PCA). The results suggest that it is possible to follow bed material changes and that the ET, after further development, may be used to optimize the material flows connected to the bed material. Further research is being conducted to optimize the ET\u27s performance and its application in monitoring bed material

    Co-combustion of sewage sludge with wood/coal in a circulating fluidised bed boiler - A study of NO and N2O emissions

    Get PDF
    Reduction of emissions of NO and N2O from co-combustion of wet or dried sewage sludge with coal or wood is investigated. This is motivated by the high nitrogen content in sewage sludge that may give rise to high emissions. An advanced air-staging method for combustion in circulating fluidised bed is applied. It is shown that with fluidised bed combustion the emissions are low as long as the sludge fraction is not too high (say, less than 25%), and the conversion of fuel nitrogen to NO or N2O is only a few percent. However, air staging as such is not efficient for high volatile fuels, and any air supply method can be applied in such a case, in contrast to combustion of coal, when the air supply arrangement has a decisive influence

    Co-firing of biomass and other wastes in fluidised bed systems

    Get PDF
    A project on co-firing in large-scale power plants burning coal is currently funded by the European Commission. It is called COPOWER. The project involves 10 organisations from 6 countries. The project involves combustion studies over the full spectrum of equipment size, ranging from small laboratory-scale reactors and pilot plants, to investigate fundamentals and operating parameters, to proving trials on a commercial power plant in Duisburg. The power plant uses a circulating fluidized bed boiler. The results to be obtained are to be compared as function of scale-up. There are two different coals, 3 types of biomass and 2 kinds of waste materials are to be used for blending with coal for co-firing tests. The baseline values are obtained during a campaign of one month at the power station and the results are used for comparison with those to be obtained in other units of various sizes. Future tests will be implemented with the objective to achieve improvement on baseline values. The fuels to be used are already characterized. There are ongoing studies to determine reactivities of fuels and chars produced from the fuels. Reactivities are determined not only for individual fuels but also for blends to be used. Presently pilot-scale combustion tests are also undertaken to study the effect of blending coal with different types of biomass and waste materials. The potential for synergy to improve combustion is investigated. Early results will be reported in the Conference. Simultaneously, studies to verify the availability of biomass and waste materials in Portugal, Turkey and Italy have been undertaken. Techno-economic barriers for the future use of biomass and other waste materials are identified. The potential of using these materials in coal fired power stations has been assessed. The conclusions will also be reported

    Axial Concentration Profiles and NO Flue Gas in a Pilot-Scale Bubbling Fluidized Bed Coal Combustor

    Get PDF
    Atmospheric bubbling fluidized bed coal combustion of a bituminous coal and anthracite with particle diameters in the range 500-4000 ím was investigated in a pilot-plant facility. The experiments were conducted at steady-state conditions using three excess air levels (10, 25, and 50%) and bed temperatures in the 750-900 °C range. Combustion air was staged, with primary air accounting for 100, 80, and 60% of total combustion air. For both types of coal, high NO concentrations were found inside the bed. In general, the NO concentration decreased monotonically along the freeboard and toward the exit flue; however, during combustion with high air staging and low to moderate excess air, a significant additional NO formation occurred near the secondary air injection point. The results show that the bed temperature increase does not affect the NO flue gas concentration significantly. There is a positive correlation between excess air and the NO flue gas concentration. The air staging operation is very effective in lowering the NO flue gas, but there is a limit for the first stage stoichiometry below which the NO flue gas starts rising again. This effect could be related with the coal rank

    Radiative heat transfer calculations in real gases

    No full text
    corecore