100 research outputs found

    Characterization of an internal slope movement structure by hydrogeophysical surveying

    Get PDF
    International audienceA hydrogeophysical study was carried out by a water controlled injection within a landslide situated on an active part of the La Clapière landslide foot (Alpes Maritimes, France). Coupling of both real-time geophysical and hydrological follow ups allowed the representation and quantification of the surface water drainage in space and time within the slipped mass. Thus, 30% of the injected water is quickly drained by a complex slipping surface meanly situated at 10-m depth. The transit time between injection and outflow of the water allowed an overloading of about 10 m3 (i.e. 10 tons) comparable with classical rain events in the area. This weight and the associated interstitial pressures increase have not led to any movements asking for the origin of the water volumes which could induce destabilizations. This experiment enabled an accurate redefinition of the internal slope structure and the understanding of the dynamics of the slipped mass with a surface hydraulic request

    Towards a standard typology of endogenous landslide seismic sources

    Get PDF
    The objective of this work is to propose a standard classification of seismic signals generated by gravitational processes and detected at close distances (&lt;1&thinsp;km). We review the studies where seismic instruments have been installed on unstable slopes and discuss the choice of the seismic instruments and the network geometries. Seismic observations acquired at 13 unstable slopes are analyzed in order to construct the proposed typology. The selected slopes are affected by various landslide types (slide, fall, topple and flow) triggered in various material (from unconsolidated soils to consolidated rocks). We investigate high-frequency bands (&gt;1&thinsp;Hz) where most of the seismic energy is recorded at the 1&thinsp;km sensor to source distances. Several signal properties (duration, spectral content and spectrogram shape) are used to describe the sources. We observe that similar gravitational processes generate similar signals at different slopes. Three main classes can be differentiated mainly from the length of the signals, the number of peaks and the duration of the autocorrelation. The classes are the “slopequake” class, which corresponds to sources potentially occurring within the landslide body; the “rockfall” class, which corresponds to signals generated by rock block impacts; and the “granular flow” class, which corresponds to signals generated by wet or dry debris/rock flows. Subclasses are further proposed to differentiate specific signal properties (frequency content, resonance, precursory signal). The signal properties of each class and subclass are described and several signals of the same class recorded at different slopes are presented. Their potential origins are discussed. The typology aims to serve as a standard for further comparisons of the endogenous microseismicity recorded on landslides.</p

    Local deformation in a hydrogel induced by an external magnetic field

    Full text link
    The aim of this study is to prove the feasibility of a system able to apply local mechanical loading on cells seeded in a hydrogel for tissue engineering applications. This experimental study is based on a previously developed artificial cartilage model with different concentrations of poly(vinyl alcohol) (PVA) that simulates the cartilage extracellular matrix (ECM). Poly(l-lactic acid) (PLLA) microspheres with dispersed magnetic nanoparticles (MNPs) were produced with an emulsion method. These microspheres were embedded in aqueous PVA solutions with varying concentration to resemble increased viscosity of growing tissue during regeneration. The ability to induce a local deformation in the ECM was assessed by applying a steady or an oscillatory magnetic field gradient to different PVA solutions containing the magnetic microparticles, similarly as in ferrogels. PLLA microparticle motion was recorded, and the images were analyzed. Besides, PVA gels and PLLA microparticles were introduced into the pores of a polycaprolactone scaffold, and the microparticle distribution and the mechanical properties of the construct were evaluated. The results of this experimental model show that the dispersion of PLLA microparticles containing MNPs, together with cells in a supporting gel, will allow applying local mechanical stimuli to cells during tissue regeneration. This local stimulation can have a positive effect on the differentiation of seeded cells and improve tissue regeneration.The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the MAT2013-46467-C4-1-R project, including the Feder funds. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank "Servicio de Microscopia Electronica" of Universitat Politecnica de Valencia for their invaluable help. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.Vikingsson, L.; Vinals Guitart, Á.; Valera Martínez, A.; Riera Guasp, J.; Vidaurre Garayo, AJ.; Gallego Ferrer, G.; Gómez Ribelles, JL. (2016). Local deformation in a hydrogel induced by an external magnetic field. Journal of Materials Science. 51(22):9979-9990. https://doi.org/10.1007/s10853-016-0226-8S997999905122Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28:385–397Gillard GC, Reilly HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 7:37–46Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111:573–583Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995) Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol 73:349–365Appelman T, Mizrahi J, Elisseeff J, Seliktar D (2011) The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials 32:1508–1516Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97Mow VC, Huiskes R (2005) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams and Wilkins, PhiladelphiaBrady MA, Waldman SD, Ethier CR (2015) The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response. Tissue Eng Part B Rev 21:1–19Valhmu WB, Stazzone EJ, Bachrach NM, Saed-Nejad F, Fischer SG, Mow VC, Ratcliffe A (1998) Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch Biochem Biophys 353:29–36Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Ann Rev Physiol 59:575–599Khan S, Sheetz MP (1997) Force effects on biochemical kinetics. Ann Rev Biochem 66:785–805Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method. Exp Cell Res 1:37–80Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101:130–140Valberg PA, Feldman HA (1987) Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys J 52:551–561Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol 73:327–335Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157–164Bausch AR, Hellerer U, Essler M, Aepfelbacher M, Sackmann E (2001) Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study. Biophys J 80:2649–2657Li L, Yang G, Li J, Ding S, Zhou S (2014) Cell behaviors on magnetic electrospun poly-d, l-lactide nano fibers. Mater Sci Eng, C 34:252–261Fuhrer R, Hofmann S, Hild N, Vetsch JR, Herrmann IK, Grass RN, Stark WJ (2013) Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 8:e81362Cezar CA, Roche ET, Vandenburgh HH, Duda GN, Walsh CJ, Mooney DJ (2016) Biologic-free mechanically induced muscle regeneration. Proc Natl Acad Sci USA 113:1534–1539Vikingsson L, Gallego Ferrer G, Gómez-Tejedor JA, Gómez Ribelles JL (2014) An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131Vikingsson L, Gomez-Tejedor JA, Gallego Ferrer G, Gomez Ribelles JL (2015) An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. J Biomech 48:1310–1317Vikingsson L, Claessens B, Gómez-Tejedor JA, Gallego Ferrer G, Gómez Ribelles JL (2015) Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. J Mech Behav Biomed Mater 48:60–69Li F, Su YL, Shi DF, Wang CT (2010) Comparison of human articular cartilage and polyvinyl alcohol hydrogel as artificial cartilage in microstructure analysis and unconfined compression. Adv Mater Res Trans Tech Publ 87:188–193Grant C, Twigg P, Egan A, Moody A, Eagland D, Crowther N, Britland S (2006) Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage. Biotechnol Prog 22:1400–1406Weeber R, Kantorovich S, Holm C (2015) Ferrogels cross-linked by magnetic nanoparticles—Deformation mechanisms in two and three dimensions studied by means of computer simulations. J Magn Magn Mater 383:262–266Lebourg M, Suay Antón J, Gómez Ribelles JL (2008) Porous membranes of PLLA–PCL blend for tissue engineering applications. Eur Polym J 44:2207–2218Santamaría VA, Deplaine H, Mariggió D, Villanueva-Molines AR, García-Aznar JM, Gómez Ribelles JL, Doblaré M, Gallego Ferrer G, Ochoa I (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly (l-lactic acid) scaffolds. J Non Cryst Solids 358:3141–3149Panadero JA, Vikingsson L, Gomez Ribelles JL, Lanceros-Mendez S, Sencadas V (2015) In vitro mechanical fatigue behaviour of poly-ε-caprolactone macroporous scaffolds for cartilage tissue engineering. Influence of pore filling by a poly(vinyl alcohol) gel. J Biomed Mater Res Part B Appl Biomater 103:1037–1043Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504Mano JF, Gómez Ribelles JL, Alves NM, Salmerón Sanchez M (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, Reiser M (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295Garlotta D (2001) A literature review of poly(lactic acid). J Polym Eng 9:63–84Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci Polym Phys 17:1097–1162Hernández F, Molina Mateo J, Romero Colomer F, Salmerón Sánchez M, Gómez Ribelles JL, Mano J (2005) Influence of low-temperature nucleation on the crystallization process of poly(l-lactide). Biomacromolecules 6:3291–3299Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contribution to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718Salmerón Sánchez M, Vincent BM, Vanden Poel G, Gómez-Ribelles JL (2007) Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40:7989–7997Nobuyuki O (1975) A threshold selection method from gray-level histograms. Automatica 11:23–2

    Landslide velocity, thickness, and rheology from remote sensing: La Clapiere landslide, France

    Get PDF
    Quantifying the velocity, volume, and rheology of deep, slow-moving landslides is essential for hazard prediction and understanding landscape evolution, but existing field-based methods are difficult or impossible to implement at remote sites. Here we present a novel and widely applicable method for constraining landslide 3-D deformation and thickness by inverting surface change data from repeat stereo imagery. Our analysis of La Clapière, an ~1 km^2 bedrock landslide, reveals a concave-up failure surface with considerable roughness over length scales of tens of meters. Calibrating the thickness model with independent, local thickness measurements, we find a maximum thickness of 163 m and a rheology consistent with distributed deformation of the highly fractured landslide material, rather than sliding of an intact, rigid block. The technique is generally applicable to any mass movements that can be monitored by active or historic remote sensing

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Mesures géophysiques pour l’analyse des glissements de terrain

    No full text
    Cet article présente différentes méthodes de prospection géophysiques utilisées pour la caractérisation, la reconnaissance de paramètres et les facteurs liés aux glissements de terrain. Nous nous sommes principalement intéressés à la recherche du plan de rupture limitant la base du glissement, du système topographique complexe caché (ou cryptorelief) et aux systèmes de chenalisation interne. Les méthodes de prospection utilisées sont le panneau électrique (pseudosections), la polarisation spontanée (PS), le profilage électromagnétique (Slingram, EM31) et le sondage électromagnétique en domaine temporel (TDEM). La prospection géophysique montre qu’elle permet de renseigner sur les limites géométriques où les glissements de terrain peuvent survenir et elle permet également une quantification des paramètres géométriques et hydrauliques utilisés dans les modèles numériques de stabilité

    Dorsal and ventral stimuli in sandwich-like microenvironments. Effect on cell differentiation

    No full text
    While most of the in vivo extracellular matrices are 3D, most of the in vitro cultures are 2D—where only ventral adhesion is permitted—thus modifying cell behavior as a way to self-adaptation to this unnatural environment. We hypothesize that the excitation of dorsal receptors in cells already attached on a 2D surface (sandwich culture) could cover the gap between 2D and 3D cell–material interactions and result in a more physiological cell behavior. In this study we investigate the role of dorsal stimulation on myoblast differentiation within different poly(l-lactic acid) (PLLA) sandwich-like microenvironments, including plain material and aligned fibers. Enhanced cell differentiation levels were found for cells cultured with dorsal fibronectin-coated films. Seeking to understand the underlying mechanisms, experiments were carried out with (i) different types of dorsal stimuli (FN, albumin, FN after blocking the RGD integrin-binding site and activating dorsal cell integrin receptors), (ii) in the presence of an inhibitor of cell contractility, and (iii) increasing the frequency of culture medium changes to assess the effect of paracrine factors. Furthermore, FAK and integrin expressions, determined by Western blotting, revealed differences between cell sandwiches and 2D controls. Results show a stimuli-dependent response to dorsal excitation, proving that integrin outside-in signaling is involved in the enhanced cell differentiation. Due to their easiness and versatility, these sandwich-like systems are excellent candidates to get deeper insights into the study of 3D cell behavior and to direct cell fate within multilayer constructs

    Control of slope deformations in high seismic area: Results from the Gulf of Corinth observatory site (Greece)

    No full text
    International audienceThe northern coast of the Peloponnesus (Greece) is characterized by high seismic activity related to the Gulf of Corinth opening with an extension rate of 16 mm y− 1. Studies presented in this paper focus on the characterization of links between tectonic and slope deformations on the Panagopoula slope, located on the southern coast. The approach is centred on qualitative and quantitative data acquisition based on geological and geomorphological investigations, geophysical imagery by electrical resistivity tomography and slope displacement monitoring. Firstly, we highlight two different types of slope deformation on Panagopoula: a superficial landslide affecting weathered limestone, and a large-scale deformation without global failure expressed in the field. Tectonic features play a major role in these two dynamic processes, taking into account the strong geometrical link between the inherited fractures and gravitational scarps mapped in the field. Secondly, the displacements survey network, distributed on both sides of a significant fault crossing the slope, allows the quantification of slope displacements underlying two components: (i) a gravitational sliding (N010) along the slope, and (ii) a supposed tectonic component (N240)

    LPC® methodology as a tool to create real time probalistic cartography of the gravitational hazard

    No full text
    International audienc

    Fils renforcés : attention au glissage !

    No full text
    International audienc
    corecore