731 research outputs found

    Implementation of the Articulated Total Body (ATB) Model on an Apollo Workstation

    Get PDF
    The Articulated Total Body Model (ATB) is used for predicting gross segmented body response in various dynamic environments. The ATB computer program, originally written by the Department of Transportation as a Crash Victim Simulation (CVS) program, was later modified by the Calspan Corporation and More recently by the Armstrong Aerospace Medical Research Laboratory (AAMRL) to allow for aerodynamic force applications, harness belt capabilities and hyper-ellipsoidal graphical display of the modeled segments. The ATB model has been successfully used to investigate gross human body responses to bodies placed in such complex dynamic environments as high-speed aircraft ejection. This ATB model is quite versatile due to the variety of inputs it can handle. Because of this versatility , a wide range of physical systems may be simulated. In this work, the ATB computer program has been modified for use on the Apollo workstation and utilized to predict limb and joint limitations a modeled human arm for the purpose of creating more effective rehabilitation schedules. A patient’s left shoulder, left-upper and left-lower arm have been modeled for a case study. The required information consists of segment physical dimensions, weight .center of gravity and maximum forces and torques obtainable from various body muscles. From this information, forces a graphical display of desired segment positions, and numerical approximations of forces, torques, positions, velocities, and accelerations of any desired point of the modeled segment. A comparison of this numerical output found from the ATB will be made with actual patient response, further input will be created tracking the patient\u27s rehabilitation progress. A mathematical model of this will be incorporated into the ATB for the purpose of predicting future patient responses and a predicted schedule for disabled patient rehabilitation.An accurate numerical and visual prediction of patient responses and limitations would be very beneficial in the creation of rehabilitation schedules. For such a service to be obtainable in a hospital environment, the ATB must be executable on a personal computing level. The Apollo workstation was selected for this project due to its relative mobility and availability. Many similar computing systems could be used where the criteria of mobility, large memory capabilities and superior graphics are obtainable. These criteria must be met so that the ATB could eventually be used by physicians in a clinic or office environment

    Downstream changes in DOC:inferring contributions in the face of model uncertainties

    Get PDF
    Dissolved organic carbon (DOC) is a central constituent of surface waters which control its characteristic color and chemistry. While the sources and controls of headwater stream DOC can be mechanistically linked to the dominant landscape types being drained, much remains unknown about the downstream controls at larger spatial scales. As DOC is transported from the headwaters to catchment outlets, the fate of stream DOC is largely dependent on the interaction of varying catchment processes. In this study, we investigated the main mechanisms regulating stream DOC in a mesoscale catchment. A landscape-mixing model was used to test the role of landscapes in determining stream concentrations. The quantity of DOC lost to in-stream processes was calculated using bacterial respiration and photooxidation rates. We investigated whether there was a change in water pathways using a mass balance model and comparison of hydrology between a headwater catchment and the entire catchment. A Monte Carlo approach was used to test robustness of the model assumptions and results to uncertainty in the process parameterizations. The results indicated that during high- and intermediate-flow conditions, DOC concentrations were regulated by the contributing upstream landscape types. During base flow, the connectivity between the mesoscale river and the upstream landscape reduced resulting in large residuals in the landscape model which could not be explained by the in-stream processes. Both the mass balance model and a specific runoff comparison between upstream/downstream sites independently indicated large input of deep groundwater during base flow. Deep groundwater was important for diluting stream DOC concentrations during base flow. Key Points Landscape types determine stream chemistry during high and intermediate flows Deep groundwater has large influences on stream chemistry during baseflow DOC lost to instream processes were smal

    Differential Trends in Iron Concentrations of Boreal Streams Linked to Catchment Characteristics

    Get PDF
    Increasing iron (Fe) concentrations have been reported for freshwaters across northern Europe over the last decades. This increase, together with elevated concentrations of dissolved organic carbon (DOC), leads to browning of freshwaters, which affects aquatic organisms, ecosystem functioning, biogeochemical cycles, and brings challenges to drinking water production. However, how such increasing trends in stream Fe concentrations reflect the contribution of different catchment sources remains poorly resolved. Here, we explored how catchment characteristics, that is, mires and coniferous soils, regulate spatial and temporal patterns of Fe in a boreal stream network. For this, we determined Fe speciation in riparian and mire soils, and studied temporal Fe dynamics in soil-water and stream-water over a span of 18 years. Positive Fe trends were found in the solution of the riparian soil, while no long-term trend was observed in the mire. These differences were reflected in stream-water, where three headwater streams dominated by coniferous cover also displayed positive Fe trends, whereas the mire dominated stream showed no trend. Surprisingly, the majority of higher order streams showed declining Fe trends, despite long-term increases in DOC. In addition, we found that an extreme drought event led to a prolonged release of Fe and DOC from the riparian soils, that could have long-term effects on stream Fe concentrations. Our results show that riparian forest soils can be major contributors to ongoing increases in freshwater Fe concentrations and that drought can further promote the release of Fe from organic soils

    Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer

    Get PDF
    Few studies have been carried out that cover the entire transport process of pesticides, from application at the soil surface, through subsurface transport, to contamination of drinking water in esker aquifers. In formerly glaciated regions, such as Scandinavia, many of the most important groundwater resources are situated in glaciofluvial eskers. The purpose of the present study was to model and identify significant processes that govern subsurface transport of pesticides in extensive glaciofluvial and littoral sediments. To simulate the transport processes, we coupled a vadose zone model at soil profile scale to a regional groundwater flow model. The model was applied to a municipal drinking-water aquifer, contaminated with the pesticide-metabolite BAM (2,6-dichlorobenzoamide). At regional scale, with the combination of a ten-meter-deep vadose zone and coarse texture, the observed concentrations could be described by the model without assuming preferential flow. A sensitivity analysis revealed that hydraulic conductivity in the aquifer and infiltration rate accounted for almost half of the model uncertainty. The calibrated model was applied to optimize the location of extraction wells for remediation, which were used to validate the predictive modeling. Running a worst-case scenario, the model showed that the establishment of two remediation wells would clean the aquifer in four years, compared to nine years without them. Further development of the model would require additional field measurements in order to improve the description of macrodispersion in deep, sandy vadose zones. We also suggest that future research should focus on characterization of the variability of hydraulic conductivity and its effect on contaminant transport in eskers

    The integrated academic information system support for education 3.0 in higher education institution: lecturer perspective

    Get PDF
    Education 3.0 has been implemented in many higher education institutions (HEIs). Education 3.0 has been directed the institution toward better educational experience. But on the other hands, the implementation of Education 3.0 also caused some problems. Previous research has found administrative problem experienced by the lecturer. This research explores deeper from the lecturer and suggested the solution from lecturer perspective, combined with information technology capabilities owned by the HEIs. The research used a case study as the method and conducted a qualitative research with a semi-structured interview. The interview analysis has found that the increase of the administrative processes is caused by online and offline administrative activities. The online activities are from e-learning and the offline activities are from traditional learning (face-to-face). The administrative processes also involved the academic information system (AIS). Simplified all of the administrative processes are more preferred. To overcome the problems, integrating the AIS and e-learning become necessary. This research suggests transforming the existing AIS into an integrated AIS and hopes the solution can simplify the administration process

    Energy input is primary controller of methane bubbling in subarctic lakes

    Get PDF
    Emission of methane (CH4) from surface waters is often dominated by ebullition (bubbling), a transport mode with high‐spatiotemporal variability. Based on new and extensive CH4 ebullition data, we demonstrate striking correlations (r2 between 0.92 and 0.997) when comparing seasonal bubble CH4 flux from three shallow subarctic lakes to four readily measurable proxies of incoming energy flux and daily flux magnitudes to surface sediment temperature (r2 between 0.86 and 0.94). Our results after continuous multiyear sampling suggest that CH4 ebullition is a predictable process, and that heat flux into the lakes is the dominant driver of gas production and release. Future changes in the energy received by lakes and ponds due to shorter ice‐covered seasons will predictably alter the ebullitive CH4 flux from freshwater systems across northern landscapes. This finding is critical for our understanding of the dynamics of radiatively important trace gas sources and associated climate feedback

    Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt; the role of discharge, winter climate and memory effects

    Get PDF
    Using a 15 year stream record from a northern boreal catchment, we demonstrate that the inter-annual variation in dissolved organic carbon (DOC) concentrations during snowmelt was related to discharge, winter climate and previous DOC export. A short and intense snowmelt gave higher stream water DOC concentrations, as did long winters, while a high previous DOC export during the antecedent summer and autumn resulted in lower concentrations during the following spring. By removing the effect of discharge we could detect that the length of winter affected the modeled soil water DOC concentrations during the following snowmelt period, which in turn affected the concentrations in the stream. Winter climate explained more of the stream water DOC variations than previous DOC export during the antecedent summer and autumn

    The riparian reactive interface: a climate-sensitive gatekeeper of global nutrient cycles

    Get PDF
    Riparian zones are critical interfaces to freshwater systems, acting as gateways for the conveyance and modification of macronutrient fluxes from land to rivers and oceans. In this paper, we propose that certain riparian conditions and processes (conceptually 'Riparian Reactive Interfaces') may be susceptible to environmental change with consequences of accelerating local nutrient cycling cascading to global impacts on the cycles of carbon (C), nitrogen (N), and phosphorus (P). However, we argue that this concept is insufficiently understood and that research has not yet established robust baseline data to predict and measure change at the key riparian ecosystem interface. We suggest one contributing factor as lack of interdisciplinary study of abiotic and biotic processes linking C, N, and P dynamics and another being emphasis on riparian ecology and restoration that limits frameworks for handling and scaling topography-soil-water-climate physical and biogeochemical observations from plot to large catchment scales. Scientific effort is required now to evaluate riparian current and future controls on global nutrient cycles through multi-nutrient (and controlling element) studies, grounded in landscape frameworks for dynamic riparian behaviour variation, facilitating scaling to catchment predictions

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
    corecore