1,175 research outputs found

    Fabrication of low-cost Mod-OA wood composite wind turbine blades

    Get PDF
    The wood composite blades were fabricated by using epoxy resin-bonded laminates of Douglas fir veneers for the leading edge spar sections and honeycomb-cored birch plywood panels for the blade trailing edge or afterbody sections. The blade was joined to the wind turbine hub assembly by epoxy resin-bonded steel load take-off studs. The wood composite blades were installed in the Mod-OA wind turbine test facility at Kahuku, Hawaii. The wood composite blades have successfully completed high power (average of 150 kW) operations for an eighteen month period (nearly 8,000 hr) before replacement with another set of wood composite blades. The original set of blades was taken out of service because of the failure of the shank on one stud. An inspection of the blades at NASA-Lewis showed that the shank failure was caused by a high stress concentration at a corrosion pit on the shank fillet radius which resulted in fatigue stresses in excess of the endurance limit

    Pmp27 Promotes Peroxisomal Proliferation

    Get PDF
    Peroxisomes perform many essential functions in eukaryotic cells. The weight of evidence indicates that these organelles divide by budding from preexisting peroxisomes. This process is not understood at the molecular level. Peroxisomal proliferation can be induced in Saccharomyces cerevisiae by oleate. This growth substrate is metabolized by peroxisomal enzymes. We have identified a protein, Pmp27, that promotes peroxisomal proliferation. This protein, previously termed Pmp24, was purified from peroxisomal membranes, and the corresponding gene, PMP27, was isolated and sequenced. Prop27 shares sequence similarity with the Pmp30 family in Candida boidinii. Pmp27 is a hydrophobic peroxisomal membrane protein but it can be extracted by high pH, suggesting that it does not fully span the bilayer. Its expression is regulated by oleate. The function of Pmp27 was probed by observing the phenotype of strains in which the protein was eliminated by gene disruption or overproduced by expression from a multicopy plasmid. The strain containing the disruption (3B) was able to grow on all carbon sources tested, including oleate, although growth on oleate, glycerol, and acetate was slower than wild type. Strain 3B contained peroxisomes with all of the enzymes of ÎČ-oxidation. However, in addition to the presence of a few modestly sized peroxisomes seen in a typical thin section of a cell growing on oleate-containing medium, cells of strain 3B also contained one or two very large peroxisomes. In contrast, cells in a strain in which Pmp27 was overexpressed contained an increased number of normal-sized peroxisomes. We suggest that Pmp27 promotes peroxisomal proliferation by participating in peroxisomal elongation or fission.

    Statistical methods for estimating petroleum resources

    Get PDF

    Boundary line models for soil nutrient concentrations and wheat yield in national-scale datasets

    Get PDF
    In boundary line analysis a biological response (e.g., crop yield) is assumed to be a function of a variable (e.g., soil nutrient concentration), which limits the response in only some subset of observations because other limiting factors also apply. The response function is therefore expressed by an upper boundary of the plot of the response against the variable. This model has been used in various branches of soil science. In this paper we apply it to the analysis of some large datasets, originating from commercial farms in England and Wales, on the recorded yield of wheat and measured concentrations of soil nutrients in within‐field soil management zones. We considered boundary line models for the effects of potassium (K), phosphorus (P) and magnesium (Mg) on yield, comparing the model with a simple bivariate normal distribution or a bivariate normal censored at a constant maximum yield. We were able to show, using likelihood‐based methods, that the boundary line model was preferable in most cases. The boundary line model suggested that the standard RB209 soil nutrient index values (Agriculture and Horticulture Development Board, nutrient management guide (RB209), 2017) are robust and apply at the within‐field scale. However, there was evidence that wheat yield could respond to additional Mg at concentrations above index 0, contrary to RB209 guidelines. Furthermore, there was evidence that the boundary line model for yield and P differs between soils at different pH and depth intervals, suggesting that shallow soils with larger pH require a larger target P index than others

    Vector competence of Aedes aegypti, Culex tarsalis, and Culex quinquefasciatus from California for Zika virus.

    Get PDF
    Zika virus (ZIKV) has emerged since 2013 as a significant global human health threat following outbreaks in the Pacific Islands and rapid spread throughout South and Central America. Severe congenital and neurological sequelae have been linked to ZIKV infections. Assessing the ability of common mosquito species to transmit ZIKV and characterizing variation in mosquito transmission of different ZIKV strains is important for estimating regional outbreak potential and for prioritizing local mosquito control strategies for Aedes and Culex species. In this study, we evaluated the laboratory vector competence of Aedes aegypti, Culex quinquefasciatus, and Culex tarsalis that originated in areas of California where ZIKV cases in travelers since 2015 were frequent. We compared infection, dissemination, and transmission rates by measuring ZIKV RNA levels in cohorts of mosquitoes that ingested blood meals from type I interferon-deficient mice infected with either a Puerto Rican ZIKV strain from 2015 (PR15), a Brazilian ZIKV strain from 2015 (BR15), or an ancestral Asian-lineage Malaysian ZIKV strain from 1966 (MA66). With PR15, Cx. quinquefasciatus was refractory to infection (0%, N = 42) and Cx. tarsalis was infected at 4% (N = 46). No ZIKV RNA was detected in saliva from either Culex species 14 or 21 days post feeding (dpf). In contrast, Ae. aegypti developed infection rates of 85% (PR15; N = 46), 90% (BR15; N = 20), and 81% (MA66; N = 85) 14 or 15 dpf. Although MA66-infected Ae. aegypti showed higher levels of ZIKV RNA in mosquito bodies and legs, transmission rates were not significantly different across virus strains (P = 0.13, Fisher's exact test). To confirm infectivity and measure the transmitted ZIKV dose, we enumerated infectious ZIKV in Ae. aegypti saliva using Vero cell plaque assays. The expectorated plaque forming units PFU varied by viral strain: MA66-infected expectorated 13±4 PFU (mean±SE, N = 13) compared to 29±6 PFU for PR15-infected (N = 13) and 35±8 PFU for BR15-infected (N = 6; ANOVA, df = 2, F = 3.8, P = 0.035). These laboratory vector competence results support an emerging consensus that Cx. tarsalis and Cx. quinquefasciatus are not vectors of ZIKV. These results also indicate that Ae. aegypti from California are efficient laboratory vectors of ancestral and contemporary Asian lineage ZIKV

    Combining observations with acoustic swath bathymetry and backscatter to map seabed sediment texture classes: the empirical best linear unbiased predictor

    Get PDF
    Seabed sediment texture can be mapped by geostatistical prediction from limited direct observations such as grab-samples. A geostatistical model can provide local estimates of the probability of each texture class so the most probable sediment class can be identified at any unsampled location, and the uncertainty of this prediction can be quantified. In this paper we show, in a case study off the northeast coast of England, how swath bathymetry and backscatter can be incorporated into a geostatistical linear mixed model (LMM) as fixed effects (covariates). Parameters of the LMM were estimated by maximum likelihood which allowed us to show that both covariates provided useful information. In a cross-validation, each observation was predicted from the rest using the LMMs with (i) no covariates, or (ii) bathymetry and backscatter as covariates. The proportion of cases in which the most probable class according to the prediction corresponded to the observed class was increased (from 58% to 65% of cases) by including the covariates which also increased the information content of the predictions, measured by the entropy of the class probabilities. A qualitative assessment of the geostatistical results shows that the model correctly predicts, for example, the occurrence of coarser sediment over discrete glacial sediment landforms, and muddier sediment in relatively quiescent, localized deep water environments. This demonstrates the potential for assimilating geophysical data with direct observations by the LMM, and could offer a basis for a routine mapping procedure which incorporates these and other ancillary information such as manually-interpreted geological and geomorphological maps

    Do agronomic approaches aligned to regenerative agriculture improve the micronutrient concentrations of edible portions of crops? A scoping review of evidence

    Get PDF
    Regenerative Agriculture (RA) is used to describe nature-based agronomic approaches that aim to build soil health and crop resilience, minimize negative environmental outcomes, and improve farmer livelihoods. A benefit that is increasingly attributed to crops grown under RA practices is improved nutritional content. However, we do not know the extent to which RA influences crop nutritional quality and under what management approaches and context, can such effects be realized. A scoping review of recent literature (Web of Science, 2000-2021) was carried out to assess the evidence that RA approaches improve crop micronutrient quality. Papers included combinations of agronomic approaches that could be defined as Regenerative: "Organic Inputs" including composts and manures, cover crops, crop rotations, crop residues and biochars; "Reduced Tillage", "Intercropping", "Biostimulants" e.g. arbuscular mycorrhizal fungi; plant growth promoting bacteria, and "Irrigation", typically deficit-irrigation and alternate wetting and drying. The crop types reviewed were predetermined covering common sources of food and included: Tomato (Solanum lycopersicum L.), Wheat (Triticum aestivum L.), Rice (Oryza sativa L.), Maize (Zea mays L.), Pulses (Fabaceae), Alliums (Allium spp.), and "other" crop types (30 types). This scoping review supports a potential role for RA approaches in increasing the concentrations of micronutrients in the edible portions of several crop types under specific practices, although this was context specific. For example, rice grown under increased organic inputs showed significant increases in grain zinc (Zn) concentration in 15 out of 16 studies. The vitamin C concentration of tomato fruit increased in similar to 50% of studies when plants were grown under increased organic inputs, and in 76% of studies when plants were grown under deficit irrigation. Overall, the magnitude and reproducibility of the effects of RA practices on most crop nutritional profiles were difficult to assess due to the diversity of RA approaches, geographical conditions, and the limited number of studies for most crops in each of these categories. Future research with appropriate designs, improved on-farm surveillance and nutritional diagnostics are needed for better understanding the potential role of RA in improving the quality of food, human nutrition, and health

    Inhibition of Pseudomonas aeruginosa Biofilm Formation with Surface Modified Polymeric Nanoparticles

    Get PDF
    The gram-negative bacterial pathogen Pseudomonas aeruginosa represents a prominent clinical concern. Due to the observed high levels of antibiotic resistance, copious biofilm formation, and wide array of virulence factors produced by these bacteria, new treatment technologies are required. Here, we present the development of a series of P. aeruginosa LecA-targeted polymeric nanoparticles and demonstrate the anti-adhesion and biofilm inhibitory properties of these constructs

    Three-dimensional mapping of soil chemical characteristics at micrometric scale by combining 2D SEM-EDX data and 3D X-ray CT images

    Get PDF
    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented in this study can be easily adapted and applied to other types of data such as bacterial or fungal population densities for the 3D characterization of microbial distribution
    • 

    corecore