28 research outputs found

    The effect of a diet with fructan-rich chicory roots on intestinal helminths and microbiota with special focus on Bifidobacteria and Campylobacter in piglets around weaning

    Get PDF
    The restrictions on the use of antibiotic and anthelmintic treatments in organic pig farming necessitate alternative non-medical control strategies. Therefore, the antibiotic and parasite-reducing effect of a fructan-rich (prebiotic) diet of dried chicory was investigated in free-ranging piglets. Approximately half of 67 piglets from 9 litters were experimentally infected with Ascaris suum and Trichuris suis in the suckling period (1 to 7 weeks of age) and 58 of the piglets were challenged daily with E. coli O138:F8 for 9 days after weaning to induce weaning diarrhoea. The litters were fed either chicory (30% DM) or a control diet. The effect of chicory on intestinal helminths, intestinal microbiota, especially Bifidobacteria and Campylobacter spp., and E. coli post-weaning diarrhoea was assessed. The weight gain of the piglets was not impaired significantly by chicory. The intestinal A. suum worm burden was reduced by 64% (P=0.034) in the chicory-fed piglets, whereas these same piglets had 63% more T. suis worms (P=0.016). Feeding with chicory elicited no changes among the main bacterial groups in ileum according to terminal restriction fragment length polymorphism (T-RFLP) analysis. However, the terminal-restriction fragment (T-RF) 208 bp, which may belong to Lachnospiraceae, was stimulated by the chicory feed (P=0.03), and T-RF 370 bp that matches Enterobacter belonging to the Enterobacteria was reduced (P=0.004). Additionally, chicory increased the level of Bifidobacteria (P=0.001) and the faecal Campylobacter excretion level was transitorily reduced in chicory-fed piglets at 7 weeks of age (P=0.029). Unfortunately, it was not possible to assess the effect of chicory on post-weaning diarrhoea as it did not develop. In conclusion, feeding piglets chicory around the time of weaning caused complex changes of the microbiota and parasite communities within the intestinal tract, and feeding piglets chicory may therefore serve as an animal-friendly strategy to control pathogens

    A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects

    Get PDF
    Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2ā€“8 of either siRNA strand counting from the 5ā€²-end) and complementary sequences in the 3ā€²UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNAā€“target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low

    Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    Get PDF
    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15ā€“0.50ā€‰kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation

    A longitudinal study on the occurrence of Cryptosporidium and Giardia in dogs during their first year of life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary aim of this study was to obtain more knowledge about the occurrence of <it>Cryptosporidium </it>and <it>Giardia </it>in young dogs in Norway.</p> <p>The occurrence of these parasites was investigated in a longitudinal study by repeated faecal sampling of dogs between 1 and 12 months of age (litter samples and individual samples). The dogs were privately owned and from four large breeds. Individual faecal samples were collected from 290 dogs from 57 litters when the dogs were approximately 3, 4, 6, and 12 months old. In addition, pooled samples were collected from 43 of the litters, and from 42 of the mother bitches, when the puppies were approximately 1 and/or 2 months old.</p> <p>Methods</p> <p>The samples were purified by sucrose gradient flotation concentration and examined by immunofluorescent staining.</p> <p>Results</p> <p>128 (44.1%) of the young dogs had one or more <it>Cryptosporidium </it>positive samples, whilst 60 (20.7%) dogs had one or more <it>Giardia </it>positive samples. The prevalence of the parasites varied with age. For <it>Cryptosporidium</it>, the individual prevalence was between 5.1% and 22.5%, with the highest level in dogs < 6 months old, and declining with age. For <it>Giardia</it>, the individual prevalence was between 6.0% and 11.4%, with the highest level in dogs > 6 months old, but the differences between age groups were not statistically significant. Significant differences in prevalences were found in relation to geographic location of the dogs. Both parasites occurred at low prevalences in Northern Norway.</p> <p>Conclusion</p> <p>Both <it>Cryptosporidium </it>and <it>Giardia </it>are common in Norwegian dogs, with <it>Cryptosporidium </it>more prevalent than <it>Giardia</it>. Prevalences of the parasites were found to be influenced by age, geographical location, and infection status before weaning.</p

    Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo

    No full text
    Small interfering RNAs (siRNAs) are now established as a favourite tool to reduce gene expression by RNA interference (RNAi) in mammalian cell culture. However, limitations in potency, duration, delivery and specificity of the gene knockdown (KD) are still major obstacles that need further addressing. Recent studies have successfully improved siRNA performance by the introduction of several types of chemical modifications. Here we explore the effect of incorporating unlocked nucleic acid (UNA) into siRNA designs. The acyclic UNA monomers lack the C2'-C3'-bond of the RNA ribose ring and additively decrease nucleic acid duplex thermostability. We show that UNA-modifications of siRNAs are compatible with efficient RNAi and can improve siRNA performance both in vitro and in vivo. In particular, we find that the destabilizing properties of UNA are well suited to enhance the potency of siRNAs which are heavily modified by other chemical modifications such as locked nucleic acid (LNA), C4'hydroxymethyl-DNA (HM), 2'-O-methyl-RNA (OMe), DNA and 2'-Flouro-DNA (F). Interestingly, we find that naked, but UNA-modified siRNAs have dramatically increased biostability in mice and can induce potent KD in a xenograft model of human pancreas cancer. Hereby UNA constitutes an important type of chemical modification for future siRNA design
    corecore