5 research outputs found

    The influence of asthma on face shape: a three-dimensional study

    No full text
    Respiratory activity may have an influence on craniofacial development and interact with genetic and environmental factors. It has been suggested that certain medical conditions such as asthma have an influence on face shape. The aim of the study is to investigate whether facial shape is different in individuals diagnosed as having asthma compared with controls. Study design included observational longitudinal cohort study. Asthma was defined as reported wheezing diagnosed at age 7 years and 6 months. The cohort was followed to 15 years of age as part of the Avon Longitudinal Study of Parents and Children. A total of 418 asthmatics and 3010 controls were identified. Three-dimensional laser surface facial scans were obtained. Twenty-one reproducible facial landmarks (x, y, z co-ordinates) were identified. Average facial shells were created for asthmatic and non-asthmatic males and females to explore surface differences. The inter-ala distance was 0.4mm wider (95% CI) and mid-face height was 0.4mm (95% CI) shorter in asthmatic females when compared with non-asthmatic females. No facial differences were detected in male subjects. Small but statistically significant differences were detected in mid-face height and inter-ala width between asthmatic and non-asthmatic females. No differences were detected in males. The lack of detection of any facial differences in males may be explained by significant facial variation as a result of achieving different stages of facial growth due to pubertal changes, which may mask any underlying condition effect

    Development of the premature infant nose throat-model (PrINT-Model): an upper airway replica of a premature neonate for the study of aerosol delivery

    No full text
    Clinical efficacy of aerosol therapy in premature newborns depends on the efficiency of delivery of aerosolized drug to the bronchial tree. To study the influence of various anatomical, physical, and physiological factors on aerosol delivery in preterm newborns, it is crucial to have appropriate in vitro models, which are currently not available. We therefore constructed the premature infant nose throat-model (PrINT-Model), an upper airway model corresponding to a premature infant of 32-wk gestational age by three-dimensional (3D) reconstruction of a three-planar magnetic resonance imaging scan and subsequent 3D-printing. Validation was realized by visual comparison and comparison of total airway volume. To study the feasibility of measuring aerosol deposition, budesonide was aerosolized through the cast and lung dose was expressed as percentage of nominal dose. The airway volumes of the initial magnetic resonance imaging and validation computed tomography scan showed a relative deviation of 0.94%. Lung dose at low flow (1 L/min) was 61.84% and 9.00% at high flow (10 L/min), p < 0.0001. 3D-reconstruction provided an anatomically accurate surrogate of the upper airways of a 32-wk-old premature infant, making the model suitable for future in vitro testing
    corecore