2,364 research outputs found

    Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis

    Get PDF
    International audienceIn this paper, we study the transport of air masses to San Pietro Capofiume (SPC) in Po Valley, Italy, by means of back trajectories analysis. Our main aim is to investigate whether air masses originate over different regions on nucleation event days and on nonevent days, during three years when nucleation events have been continuously recorded at SPC. The results indicate that nucleation events occur frequently in air masses arriving from Central Europe, whereas event frequency is much lower in the air transported from southern directions and from the Atlantic Ocean. We also analyzed the behaviour of meteorological parameters during 96 h transport to SPC, and found that, on average, event trajectories undergo stronger subsidence during the last 12 h before the arrival at SPC than nonevent trajectories. This causes a reversal in the temperature and relative humidity (RH) differences between event and nonevent trajectories: between 96 and 12 h back time, temperature is lower and RH is higher for event than nonevent trajectories and between 12 and 0 h vice versa. Boundary layer mixing is stronger along the event trajectories compared to nonevent trajectories. The absolute humidity (AH) is similar for the event and nonevent trajectories between about 96 h and about 60 h back time, but after that, the event trajectories AH becomes lower due to stronger rain. We also studied transport of SO2 to SPC, and conclude that although sources in Po Valley most probably dominate the measured concentrations, certain Central and Eastern European sources also make a substantial contribution

    Ternary nucleation of H_2SO_4, NH_3 and H_2O

    Get PDF
    A classical theory of the ternary homogeneous nucleation of sulfuric acid—ammonia—water is presented. For NH3 mixing ratios exceeding 1 ppt, the presence of ammonia enhances the binary (sulfuric acid—water) nucleation rate by several orders of magnitude. However, the limiting component for ternary nucleation—as for binary nucleation—is sulfuric acid. The sulfuric acid concentration needed for significant ternary nucleation is several orders of magnitude below that required in binary case

    Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    No full text
    International audienceThe hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12?1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25?1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways

    Design of an Auction-based Local Energy Market for Integrated Electricity and Heat Networks Coordinated with Wholesale Market

    Get PDF
    This article presents a market-based framework for coupling of electricity and heat sectors at the local level via power-to-heat (P2H) units. The considered local energy market (LEM) is designed based on an auction-based energy trading process which is settled by the integrated energy system operator (IESO) with the objective of social welfare maximization. Moreover, as part of the suggested mechanism, the coordination between the IESO and the transmission system operator (TSO) is considered to evaluate the mutual impact of the designed LEM on the wholesale electricity market (WEM) and vice versa. To this end, a bi-level programming model is employed, in which the LEM clearing problem is implemented at its upper level (UL) while the WEM clearing problem is executed at its lower level (LL). To assess the operation of the LEM and its coordination with the WEM, a case study is considered in which an integrated energy system (IES), including a 13-node electric distribution system and a 4-node district heating system, is connected to a 6-node transmission system.Š IET. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.fi=vertaisarvioitu|en=peerReviewed

    Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration

    Get PDF
    International audienceAccording to atmospheric observations new particle formation seems to be a function of sulphuric acid concentration to the power from one to two. The nucleation theorem then predicts that the critical cluster contains one to two sulphuric acid molecules. However, existing nucleation theories predicts that the power is more (or equal) than 2. Here we present an activation theory, which can explain the observed slope. In cluster activation the clusters containing one sulphuric acid molecule will activate for further growth due to heterogeneous nucleation, heterogeneous chemical reactions including polymerization or activation of soluble clusters. In the activation process organic vapours are typically needed as condensing agents

    Why formation rate of 3 nm particles depends linearly on sulphuric acid concentration?

    No full text
    International audienceAccording to atmospheric observations new particle formation seems to be a function of sulphuric acid concentration to the power from one to two. The nucleation theorem then predicts that the critical cluster contains one to two sulphuric acid molecules. However, existing nucleation theories predicts that the power is more (or equal) than 2. Here we present an activation theory, which can explain the observed slope. In cluster activation the clusters containing one sulphuric acid molecule will activate for further growth due to heterogeneous nucleation, heterogeneous chemical reactions including polymerization or activation of soluble clusters. In the activation process organic vapours are typically needed as condensing agents

    Modulation of Brain Activity after Learning Predicts Long-Term Memory for Words

    Get PDF
    The acquisition and maintenance of new language information, such as picking up new words, is a critical human ability that is needed throughout the life span. Most likely you learned the word “blog” quite recently as an adult, whereas the word “kipe,” which in the 1970s denoted stealing, now seems unfamiliar. Brain mechanisms underlying the long-term maintenance of new words have remained unknown, albeit they could provide important clues to the considerable individual differences in the ability to remember words. After successful training of a set of novel object names we tracked, over a period of 10 months, the maintenance of this new vocabulary in 10 human participants by repeated behavioral tests and magnetoencephalography measurements of overt picture naming. When naming-related activation in the left frontal and temporal cortex was enhanced 1 week after training, compared with the level at the end of training, the individual retained a good command of the new vocabulary at 10 months; vice versa, individuals with reduced activation at 1 week posttraining were less successful in recalling the names at 10 months. This finding suggests an individual neural marker for memory, in the context of language. Learning is not over when the acquisition phase has been successfully completed: neural events during the access to recently established word representations appear to be important for the long-term outcome of learning.Peer reviewe
    • …
    corecore