637 research outputs found
A multi-approach and multi-scale platform to model CD4+ T cells responding to infections
Immune responses rely on a complex adaptive system in which the body and infections interact at multiple scales and in different compartments. We developed a modular model of CD4+ T cells, which uses four modeling approaches to integrate processes at three spatial scales in different tissues. In each cell, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models. Cell population dynamics are described by an agent-based model and systemic cytokine concentrations by ordinary differential equations. A Monte Carlo simulation algorithm allows information to flow efficiently between the four modules by separating the time scales. Such modularity improves computational performance and versatility and facilitates data integration. We validated our technology by reproducing known experimental results, including differentiation patterns of CD4+ T cells triggered by different combinations of cytokines, metabolic regulation by IL2 in these cells, and their response to influenza infection. In doing so, we added multi-scale insights to single-scale studies and demonstrated its predictive power by discovering switch-like and oscillatory behaviors of CD4+ T cells that arise from nonlinear dynamics interwoven across three scales. We identified the inflamed lymph node’s ability to retain naive CD4+ T cells as a key mechanism in generating these emergent behaviors. We envision our model and the generic framework encompassing it to serve as a tool for understanding cellular and molecular immunological problems through the lens of systems immunology
Chronic Loss of Melanin-Concentrating Hormone Affects Motivational Aspects of Feeding in the Rat
Current epidemic obesity levels apply great medical and financial pressure to the strenuous economy of obesity-prone cultures, and neuropeptides involved in body weight regulation are regarded as attractive targets for a possible treatment of obesity in humans. The lateral hypothalamus and the nucleus accumbens shell (AcbSh) form a hypothalamic-limbic neuropeptide feeding circuit mediated by Melanin-Concentrating Hormone (MCH). MCH promotes feeding behavior via MCH receptor-1 (MCH1R) in the AcbSh, although this relationship has not been fully characterized. Given the AcbSh mediates reinforcing properties of food, we hypothesized that MCH modulates motivational aspects of feeding
A Major Role for Perifornical Orexin Neurons in the Control of Glucose Metabolism in Rats
OBJECTIVE-The hypothalamic neuropeptide orexin influences (feeding) behavior as well as energy metabolism. Administration of exogenous orexin-A into the brain has been shown to increase both food intake and blood glucose levels. In the present study, we investigated the role of endogenous hypothalamic orexin release in glucose homeostasis in rats. RESEARCH DESIGN AND METHODS-We investigated the effects of the hypothalamic orexin system on basal endogenous glucose production (EGP) as well as on hepatic and peripheral insulin sensitivity by changing orexinergic activity in the hypothalamus combined with hepatic sympathetic or parasympathetic denervation, two-step hyperinsulinemic-euglycemic clamps, immunohistochemistry, and RT-PCR studies. RESULTS-Hypothalamic disinhibition of neuronal activity by the gamma-aminobutyric acid receptor antagonist bicuculline (BIC) increased basal EGP, especially when BIC was administered in the perifornical area where orexin-containing neurons but not melanocortin-concentrating hormone-containing neurons were activated. The increased BIC-induced EGP was largely prevented by intracerebroventricular pretreatment with the orexin-1 receptor antagonist. Intracerebroventricular administration of orexin-A itself caused an increase in plasma glucose and prevented the daytime decrease of EGP. The stimulatory effect of intracerebroventricular orexin-A on EGP was prevented by hepatic sympathetic denervation. Plasma insulin clamped at two or six times the basal levels did not counteract the stimulatory effect of perifornical BIC on EGP, indicating hepatic insulin resistance. RT-PCR showed that stimulation of orexin neurons increased the expression of hepatic glucoregulatory enzymes. CONCLUSIONS-Hypothalamic orexin plays an important role in EGP, most likely by changing the hypothalamic output to the autonomic nervous system. Disturbance of this pathway may result in unbalanced glucose homeostasis. Diabetes 58:1998-2005, 200
A clonal expression biomarker associates with lung cancer mortality
An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage1. Transcriptomic intratumor heterogeneity (RNA-ITH) has been shown to confound existing expression-based biomarkers across multiple cancer types2,3,4,5,6. Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types
- …