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Molecular biomarkers aim to stratify cancer patients into disease subtypes 

predictive of outcome, improving diagnostic precision beyond clinical descriptors 

such as tumour stage1. Transcriptomic intra-tumour heterogeneity (RNA-ITH) has 

been shown to confound existing expression-based biomarkers across multiple 

cancer types2–6. Here, we analyse multi-region whole-exome and RNA sequencing 

data for 156 tumour regions from 48 TRACERx patients to explore and control for 

RNA-ITH in non-small cell lung cancer (NSCLC). We find that chromosomal 

instability (CIN) is a major driver of RNA-ITH, and existing prognostic gene 

expression signatures are vulnerable to tumour sampling bias. To address this, 

we identify genes expressed homogeneously within individual tumours that 

encode expression modules of cancer cell proliferation and are often driven by 

DNA copy-number gains selected early in tumour evolution. Clonal transcriptomic 

biomarkers overcome tumour sampling bias, associate with survival 

independently of clinicopathological risk factors, and may provide a general 

strategy to refine biomarker design across cancer types. 

  



 

 

Multiple attempts have been made to derive a prognostic gene expression signature for 

patients with lung adenocarcinoma (LUAD)7–16, the most common histological subtype of 

NSCLC. However, none has been successfully adopted in clinical practice due to poor 

reproducibility in independent patient cohorts or failure to provide molecular information 

beyond existing clinicopathological risk factors1,17. 

 

Genomic intra-tumour heterogeneity (ITH) is prevalent across cancer types18. Previous 

multi-region sequencing studies have indicated that molecular biomarkers may be 

confounded by sampling bias arising from ITH2–6 (Fig. 1a). Therefore, addressing ITH as 

a confounding factor for biomarker design is an important challenge for precision 

oncology19–22 (Fig. 1b).  

 

To explore the causes and consequences of RNA-ITH in NSCLC, we utilized three 

RNAseq-based expression datasets from patients with early-stage lung cancer (Extended 

Data 1a-b, Supplementary Table 1): (i) the TRACERx multi-region dataset23 to derive RNA 

intra- and inter-tumour heterogeneity scores (156 tumour regions from 48 TRACERx 

NSCLC patients [median 3 regions per tumour, range 2-7], stage I-III), (ii) The Cancer 

Genome Atlas (TCGA) NSCLC dataset24,25 to develop prognostic signatures (n = 959 



 

 

NSCLC patients, stage I-III), and (iii) the Uppsala NSCLC dataset26 (n = 170 NSCLC 

patients, stage I-III) for validation purposes. All references to tumour stage are based on 

version 7 of the TNM groupings27. Four microarray-based expression datasets16,28–30 were 

also analysed as additional validation cohorts (Extended Data 1c). 

 

Unsupervised hierarchical clustering on the top 500 most variant genes across all tumour 

samples in the TRACERx multi-region cohort (156 tumour regions, 48 NSCLC patients, 

stage I-III) revealed perfect clustering concordance between regions from the same 

tumour (Extended Data 2a), suggesting overall RNA inter-tumour heterogeneity exceeds 

intra-tumour heterogeneity. While this shows that each tumour has a uniquely identifiable 

expression profile, this gene set does not offer information on patient prognosis (log-rank 

P = 0.686, Extended Data 2b). To assess the impact of RNA-ITH on prognostic 

information, we investigated the effect of RNA-ITH and sampling bias on previously 

published prognostic gene expression signatures in LUAD using patients from the 

TRACERx cohort (89 tumour regions, 28 LUAD patients, stage I-III). First, we evaluated 

the performance of a recent RNAseq-based prognostic signature developed by Shukla et 

al14 (Fig. 1c). Using the RNAseq signature to classify tumour regions as either high-risk or 



 

 

low-risk, 43% of patients (12/28) exhibited discordant risk classification (Fig. 1d, left). 

Similarly, using an immune-related prognostic signature12, a discordance rate of 29% (8/28 

patients) was observed (Fig. 1d, right). These data indicate that whether a patient is 

classified as low- or high-risk is frequently influenced by which tumour sample is analysed, 

thus potentially limiting the clinical utility of existing prognostic assays.  

 

The majority of gene expression signatures in NSCLC have been derived using microarray 

expression profiling, not RNAseq. To assess the prevalence of sampling bias regardless 

of the original profiling platform, we used a previously described clustering method5 to 

evaluate sampling bias in the TRACERx cohort (89 tumour regions, 28 LUAD patients, 

stage I-III). Applied to 9 published prognostic signatures7–15, this analysis revealed the 

median discordance rate was 50% (15.5/28 LUAD tumours, range = 18-82%) at the level 

of individual patients, indicating that half of the tumours in this cohort could be at risk of 

misclassification due to sampling bias (Extended Data 2c-d). Although these analyses do 

not directly measure prognostic ability, taken together, the data suggest that existing 

signatures are commonly subject to sampling bias, which may contribute to the low 

validation rate of gene expression signatures in NSCLC. 



 

 

 

Biomarker design may be improved by limiting sampling bias (caused by intra-tumour 

heterogeneity) and maximising discriminatory power between tumours (inter-tumour 

heterogeneity), to identify prognostic RNA markers that offer superior reproducibility and 

clinical utility compared to existing prognostic signatures. To explore this hypothesis, we 

derived a per-gene metric for RNA intra- and inter-tumour heterogeneity and split both 

heterogeneity metrics by their mean (see Methods, Supplementary Table 2, Extended 

Data 3). This resulted in four RNA heterogeneity quadrants for LUAD (Fig. 2a): low inter- 

and high intra- (Q1 = 798 genes), low inter- and low intra- (Q2 = 9,642 genes), high inter- 

and high intra- (Q3 = 4,766 genes), high inter- and low intra- (Q4 = 1,080 genes). Genes 

in Q4 satisfy the desired criteria: exhibiting homogenous expression within tumours, 

restricting sampling bias, yet are highly variable between tumours, so may be informative 

for patient stratification. Determining clustering concordance scores for individual genes, 

we found Q4 genes best clustered TRACERx tumour regions by patient (Extended Data 

4), indicating that these genes are the least vulnerable to sampling bias. 

 



 

 

Genes in Q4 comprise only 7% of all expressed genes (1,080/16,286, Fig. 2a), yet make 

up 20% of the genes collated from 9 published prognostic signatures7–15 (54/275, including 

33 overlapping across multiple signatures, Extended Data 5a-b, Supplementary Table 3) 

- a three-fold enrichment (P = 1.39 x 10-12, Fig. 2b) suggesting that previous studies tend 

to select Q4 genes even in the absence of RNA-ITH information. We next evaluated the 

ability of genes from the 9 prognostic signatures7–15 (242 unique genes) to validate in an 

independent patient cohort (TCGA, n = 469 LUAD patients, stage I-III), finding those in Q4 

reproducibly associate with survival significantly better than genes from other quadrants 

(Q2-vs-Q4 P = 6.5 x 10-8, Q3-vs-Q4 P = 4.0 x 10-4, Fig 2c; insufficient genes in Q1 for Q1-

vs-Q4 comparison). Similar results were observed using microarray-based gene 

expression data from four cohorts (total n = 801 LUAD patients), despite the platform 

differences between microarray and RNAseq data (Extended Data 5c-f).  

 

To further examine the ability of Q4 genes to reproducibly maintain prognostic information, 

we examined the cross-cohort performance of randomly generated signatures. Previous 

work has shown that a high proportion of random signatures significantly associate with 

survival upon assessment in independent validation datasets31,32. We derived 1,000 



 

 

signatures in the TCGA RNAseq cohort (n = 469 LUAD patients, stage I-III), using 20 

genes randomly drawn from each heterogeneity quadrant (defined in multi-region RNAseq 

data from the TRACERx LUAD cohort), then assessed their prognostic value across the 

four microarray-based cohorts (combined n = 801 LUAD patients, stage I-III). When based 

on Q4 genes, we observed a marked increase in the number of random signatures 

significantly associated with outcome across multiple cohorts (56% of Q4 signatures 

significant across 4 cohorts, versus 0%, 0.7% and 7.3% for Q1, Q2 and Q3 genes 

respectively, Fig. 2d). These results provide evidence that Q4 is highly enriched for genes 

with a reproducible survival association relative to the other RNA heterogeneity quadrants.  

 

To assess the relevance of our findings for biomarker design, we replicated a range of 

methods previously taken to derive prognostic signatures in LUAD10,14,33,34 (Extended Data 

6a, Supplementary Table 4), using the TCGA RNAseq cohort (n = 469 LUAD patients, 

stage I-III) for signature development. Conventional biomarker design involves the 

selection of survival-associated genes, and the fitting of a prognostic model using a 

machine learning algorithm (such as stepwise regression14, tree classification33, random 

forest regression34, or elastic-net regression10) to generate a gene expression signature. 



 

 

In parallel, we implemented a clonal version of each signature using the same 

methodology but including only Q4 genes in the prognostic model (Extended Data 6a, 

Supplementary Table 4). The survival association of each signature was evaluated in the 

Uppsala RNAseq dataset (n = 103 LUAD patients, stage I-III) as an independent patient 

cohort for validation. Only the clonal version of the signature based on elastic-net 

regression was significant in the validation dataset (Fig. 3a), highlighting the limited 

reproducibility of conventional prognostic signature design.  

 

The approach based on elastic-net regression restricted signature design to a gene list of 

published prognostic genes10 (Extended Data 6a). However, we observed above that a 

high proportion of Q4 genes have a reproducible survival association (Fig. 2d), suggesting 

the potential for novel biomarker discovery. We thus designed a de novo strategy, inputting 

a list of Q4 genes (ranked by clustering concordance in the TRACERx cohort, Extended 

Data 4) to the elastic-net algorithm. This generated a 23-gene prognostic signature 

(Supplementary Table 5) we termed the Outcome Risk Associated Clonal Lung 

Expression (ORACLE) biomarker (Extended Data 6b-d and Methods for details). Only 

11% of TRACERx LUAD patients (3/28) exhibited discordant classification using ORACLE 



 

 

(Extended Data 6e), which compares favourably with the discordance rates for existing 

prognostic signatures (43% and 29% for two RNAseq-based signatures12,14, Fig. 1d). 

Moreover, the ORACLE risk score significantly associated with mortality in the Uppsala 

validation cohort (HR = 3.16 [1.4-7.0], Cox UVA P-value = 0.00474, Fig. 3a). 3-year overall 

survival was 80% [68-94%] in the ORACLE low-risk group and 57% [46-71%] in the 

ORACLE high-risk group (Extended Data 7a). 

 

To investigate concordance across multiple cohorts, we applied ORACLE to the four 

microarray datasets. We expected ORACLE’s performance to be poorer, considering that 

we were only able to match 19/23 genes to the microarray probe sets and we applied 

signature weights trained on RNAseq data. However, ORACLE significantly associated 

with survival in 3/4 microarray datasets (univariate Cox regression: Okayama et al cohort 

P = 0.002, HR = 5.4; Rousseaux et al cohort P = 0.003, HR = 2.9; Shedden et al cohort P 

= 2.3 x 10-8, HR = 3.6; Der et al cohort P = 0.3, HR = 1.6), and in a meta-analysis 

considering all validation cohorts (combined n = 904 LUAD patients, stage I-III) ORACLE 

was significantly associated with outcome (overall HR = 3.57 [2.94-3.54], P < 0.0001, Fig. 



 

 

3b). These data indicate that survival associations resistant to differences in expression 

profiling technology can be obtained by controlling for RNA-ITH in biomarker design.  

 

In the Uppsala RNAseq validation cohort (n = 103 LUAD patients, stage I-III) ORACLE 

was significantly associated with overall survival in multivariate analysis adjusting for TNM 

stage, adjuvant treatment status, age, WHO performance status, smoking history, gender 

and Ki67 staining percentage (adjusted HR = 2.64 [1.15-6.05], Cox MVA P = 0.0216, Fig. 

3c). This analysis suggests that ORACLE could provide prognostic information 

independently of known clinicopathological risk factors. 

 

Stage I LUAD patients with tumour diameters <4cm are not routinely offered adjuvant 

chemotherapy due to lack of treatment benefit35,36. Biomarker based stratification in this 

patient population could identify a higher risk subgroup that might benefit from adjuvant 

therapy1,17. Therefore, we specifically explored this subgroup (Uppsala cohort, n = 60 

stage I LUAD patients). Dividing this cohort by sub-stage parameters (n = 42 IA patients, 

n = 18 IB patients; Fig. 3d) was not prognostically informative, likely due to the small 

sample size. However, ORACLE separated stage I patients into high-risk (n = 32 LUAD 



 

 

patients, stage I) and low-risk (n = 28 stage I LUAD patients) groups with significantly 

different survival times (log-rank P = 0.02, Fig. 3d). This result was replicated using the 

updated version 8 TNM criteria37 (Extended Data 7b-c). While these data must be 

considered hypothesis generating due to cohort size restrictions, our findings suggest that 

ORACLE is associated with mortality in stage I LUAD patients. 

 

Exploring the biological underpinnings of the ORACLE signature, we observed that 

ORACLE risk scores increased with primary tumour stage (Uppsala, n=103 LUAD 

patients, stage I-III) and were significantly higher in metastatic samples (MET500 

dataset38, n=8 patients with RNAseq data from primary LUAD tumours) (Extended Data 

7d). ORACLE expression also positively correlated with Ki67 staining in TRACERx (89 

regions from 28 LUAD patients, stage I-III), a histological marker of cancer cell proliferation 

(Rs = 0.44, P = 0.0000205, Extended Data 7e). To clarify whether the signature was 

predominantly expressed in cancer cells, we explored the relationship between ORACLE 

risk score and metrics of immune infiltration in the TRACERx cohort (89 tumour regions 

from 28 LUAD patients, stage I-III). There was a significant negative correlation between 

ORACLE risk scores and most (11/16) immune cell-subsets defined using an RNAseq-



 

 

based metric of immune infiltration39 (Extended Data 8a) and a non-significant, but 

trending negative, correlation with a WES-based measure of tumour purity40 (Extended 

Data 8b). In gene expression “clusters”, previously defined for stromal cells using single-

cell RNAseq from lung tumours41, the expression levels of most (20/23) ORACLE genes 

was negligible compared to known microenvironmental cell-type marker genes (Extended 

Data 8c). We examined whether there was a relationship in the TRACERx cohort (89 

tumour regions from 28 LUAD patients, stage I-III) between the expression of individual 

ORACLE genes and the tumour copy-number state at the corresponding gene locus, 

revealing a positive correlation for most (21/23) ORACLE genes (Extended Data 8d). 

Taken together, these data suggest that ORACLE is derived principally from genes 

expressed in cancer cells and may serve as a molecular read-out for tumour 

aggressiveness and metastatic potential.  

 

Next, we investigated whether the design of clonal biomarkers may hold prognostic 

relevance across other cancer types. To ensure our heterogeneity quadrant approach was 

not biased to LUAD specific genes, we leveraged the full multi-region RNAseq dataset 

from TRACERx (n = 48 NSCLC patients), incorporating data from multi-region LUSC 



 

 

tumours and other NSCLC histologies, to calculate NSCLC RNA heterogeneity scores. 

Using pan-cancer prognostic scores from PRECOG42, a meta-dataset summarizing 166 

microarray datasets covering 39 distinct malignant histologies, the proportion of genes that 

were found to give a pan-cancer significant prognostic value was assessed within each 

quadrant. Consistent with our analysis in LUAD, genes within Q4 exhibited significantly 

higher pan-cancer prognostic ability compared to all other quadrants (Q1-vs-Q4 P = 8.9 x 

10-27, Q2-vs-Q4 P = 9.3 x 10-08, Q3-vs-Q4 P = 1.9 x 10-18; Fig. 4a). Moreover, we found 

that Q4 genes were significantly enriched for prognostic genes in 49% (19/39) of cancer 

types (Fig. 4b, bottom-right panel, indicated in red) and only significantly depleted in head 

and neck cancer (3% of cancer types, 1/39; Fig. 4b, bottom-right panel, indicated in blue). 

Conversely, Q1 (high within, low between tumour variability) was significantly depleted in 

56% (22/39) of cancer types, but enriched in 0% (0/39). Both Q2 (low within, low between 

variation) and Q3 (high within, high between variation) showed similar numbers of 

depleted and enriched cancer types (Fig 4b, Supplementary Table 6). Concordant with 

this analysis, we found that Q4 exhibited enrichment for prognostic genes across cancer 

types (Supplementary Table 6) using prognostic scores calculated from 19 distinct 

malignant histologies, as part of the Human Pathology Atlas study43. 



 

 

 

To explore the mechanisms underpinning RNA-ITH, we calculated tumour-level scores for 

RNA-ITH (as illustrated in Extended Data 3a) and evaluated how these scores relate to 

immune infiltration44 and genetic ITH metrics23. To determine the dependence of RNA-ITH 

on multi-region sequencing, we assessed the effect of varying the number of samples per 

tumour on the RNA-ITH estimate for each patient. RNA-ITH scores saturate with 

increasing sample number, plateauing at around four samples for most tumours (Extended 

Data 9a). Examining the relationship between RNA-ITH and tumour cellular composition 

in TRACERx NSCLC patients (n = 48 NSCLC patients, stage I-III), RNA-ITH did not 

correlate with any of the immune cell subsets defined using an RNAseq-based metric of 

immune infiltration39 (Extended Data 9b), and also did not associate with a WES-based 

measure of tumour purity40 (Extended Data 9c). By contrast, a significant correlation 

between the median RNA-ITH score per tumour and somatic copy-number alterations 

(SCNA) ITH per tumour23 was observed for TRACERx NSCLC tumours (Rs = 0.48, P = 

0.0162, Fig. 4c), indicating that SCNA-ITH may contribute to transcriptomic heterogeneity. 

Consistent with this, we found that subclonal copy-number gains or losses associated with 

a corresponding change in expression (P < 2.2 x 10-16, Fig. 4d). These data indicate that 



 

 

RNA-ITH may reflect on-going chromosomal instability and the selection of heterogeneous 

DNA copy number events.  

 

To define the genetic basis for the stable expression of Q4 genes, we assessed the relative 

enrichment of clonal or subclonal copy-number changes in the genes present within each 

RNA heterogeneity quadrant (Fig. 4e) using the TRACERx cohort (n = 48 NSCLC patients, 

stage I-III). We observed a highly significant enrichment of Q4 genes subject to clonal 

copy number gain events (OR = 1.64, P=1.18 x 10-5), and Q3 genes to a lesser extent (OR 

= 1.26, P = 1.1 x 10-4), while we observed a depletion of Q2 genes (OR = 0.74, P = 6.86 

x 10-8). When we investigated individual SCNA events, we found most were sample-

specific and not shared across the cohort. Indeed, the mean percentage of samples 

showing clonal SCNA for any given Q4 gene was only 12% (data not shown). These data 

suggest that homogeneous expression across a tumour is likely derived from sample-

specific clonal DNA copy number gains, selected early in tumour evolution. 

 

Finally, we investigated whether Q4 genes may also be linked to specific biological 

features of tumour aggressiveness that might explain their discriminatory prognostic 



 

 

properties. In a Reactome pathway analysis (Extended Data 10, Supplementary Table 7), 

Q1 (low inter- and high intra-) showed no significant enrichment, the top pathways 

enriched in Q2 (low inter- and low intra-) showed involvement in RNA splicing processing, 

and top pathways enriched in Q3 (high inter- and high intra-) showed involvement in GPCR 

ligand binding and extracellular matrix organization. Notably, Q4 genes (high inter- and 

low intra-) were significantly enriched for pathways involved in cell proliferation, including 

mitosis, nucleosome assembly and epigenetic regulation (Fig. 4f). 

 

Overall, these data suggest Q4 genes - which retain uniform expression levels within 

individual tumours (low intra-tumour heterogeneity) despite ongoing CIN, yet vary greatly 

between tumours (high inter-tumour heterogeneity) - tend to correlate with clinical outcome 

and encode cell proliferation modules. Such genes, a subset of which are incorporated 

into ORACLE, may be optimal candidates for the development of biomarker assays.  

 

Tumour evolution, fostered by ITH, has been shown to bias the application of molecular 

biomarkers to diagnostic tumour samples2–6, and is an unaddressed confounding factor 

for biomarker design19–22. Here, we leveraged multi-region RNAseq data from the 



 

 

TRACERx lung study23 to minimize the confounding effects of RNA-ITH in biomarker 

design. We defined a core set of clonally expressed genes in lung cancer that reproducibly 

maintain prognostic value in multiple patient cohorts, and are subject to clonal 

chromosomal gains in genes encoding cell proliferation. In addition, we find RNA-ITH is 

associated with spatially separated subclonal chromosomal aberrations. Overall, these 

data suggest the early evolutionary selection for high-risk DNA copy number changes 

driving proliferation may contribute to poor clinical outcome, with ongoing CIN giving rise 

to RNA-ITH as a confounding factor for biomarker discovery. 

 

Previous recommendations have suggested that multi-region sequencing may be more 

informative for prognostication, either by pooling multiple samples per tumour to take the 

average molecular read-out20, or to identify the “lethal” subclone22 with maximal immune-

evasive45 or metastatic46–48 potential. As this is impractical for routine clinical use, we 

suggest ORACLE as a pragmatic solution that may be applicable to single-region tumour 

samples if validated in further cohorts.  

 



 

 

A subset of stage I LUAD patients have disease relapse following surgery leading to death, 

yet stage I patients with tumour diameters <4cm do not exhibit improved survival outcomes 

with adjuvant therapy35,36. Conceivably, this may reflect a limitation of the TNM staging 

system in accurately assigning risk to stage I patients that could be overcome by 

biomarker-driven risk stratification1,17. Here ORACLE enabled division of a small cohort of 

stage I patients (Uppsala cohort, n = 60 LUAD patients) into two groups with differing 

overall survival risk. A prospective clinical trial would be required to ascertain whether 

offering adjuvant therapy to the ORACLE high-risk group could improve post-surgical 

outcomes through the reduction of cancer associated death.  

 

Future analyses may further hone the RNA-ITH metric described here, possibly through 

explicitly modelling expression levels as a function of spatial coordinates49. The design of 

clonal biomarkers may be extended, incorporating domain knowledge to focus on a single 

expression module (such as cell cycle genes15 or immune pathways12) or ensuring the 

equal representation of multiple expression modules (using manual50 or “blind”51 

dimensionality reduction methods). Lastly, we note that existing expression-based 

predictive biomarkers for checkpoint blockade immunotherapy52,53 exhibit substantial 



 

 

sampling bias in the TRACERx cohort44, possibly indicating that the clonal expression 

approach developed here could help refine the prediction of patient responses to specific 

therapies, including those manipulating the immune microenvironment.  
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Figure Legends 

Fig. 1 | Tumour sampling bias confounds lung cancer biomarkers 

a, Prognostic biomarkers classify tumour biopsies as high (red) or low risk (blue). The 

TRACERx trial samples multiple biopsies from each tumour (R1-4), however diagnosis is 

typically made using a single tumour biopsy (dashed triangle) in routine clinical practice. 

The hypothetical biomarker illustrated here exhibits discordant risk classification of tumour 

regions, thus the molecular read-out of the diagnostic biopsy (blue circle) is vulnerable to 

tumour sampling bias. b, Applied to a diagnostic biopsy (1) a prognostic biomarker 

stratifies lung cancer patients into more precise disease subtypes based on estimated 

survival risk (2), which may help inform therapeutic decision-making (3). For example 

correctly distinguishing high-risk patients (red), in need of adjuvant chemotherapy, from 

low-risk patients (blue) for whom surgery alone is curative. However, patients vulnerable 

to tumour sampling bias (gray) may be incorrectly stratified, resulting in assignment to a 

sub-optimal treatment and follow-up strategy. c, A published RNAseq prognostic signature 

for LUAD14 is evaluated in TRACERx (n = 28 LUAD patients, stage I-III). Each point 

represents a single tumour region and the vertical lines display the range for each patient. 

Points are coloured according to the risk classification of tumour regions within a patient: 

concordant low-risk (blue), concordant high-risk (red), or discordant (gray). d, Percentages 

of TRACERx patients (n = 28 LUAD patients, stage I-III) classified as concordant low-risk 

(blue), concordant high-risk (red), or discordant (gray) using two published RNAseq 

prognostic signatures for LUAD: Shukla et al14 (left), Li et al12 (right).  

 

Fig. 2 | RNA inter- and intra-tumour heterogeneity quadrants 

a, RNA heterogeneity quadrants calculated in TRACERx (n = 28 LUAD patients, stage I-

III). RNA intra-tumour (y-axis) and inter-tumour heterogeneity (x-axis) are plotted on the 

axes as density curves. The plot is divided into quadrants by the mean intra-tumour 

(dashed horizontal line) and mean inter-tumour (dashed vertical line) heterogeneity 

scores. The quadrants are numbered and coloured (Q1=red, Q2=purple, Q3=yellow, 

Q4=blue) with the number of genes per quadrant indicated. b, Composition of published 

prognostic genes. Radar plot of the percentage of genes observed in 9 published LUAD 

prognostic signatures7–15 per quadrant (as indicated in Extended Data 5a-b), divided by 

the percentage of genes expected per quadrant (total no. genes, as indicated in Fig. 2a). 

c, Reproducible survival association of published prognostic genes. The ability of genes 



 

 

from published signatures7–15 to maintain prognostic value in an independent patient 

cohort (TCGA, n = 469 LUAD patients, stage I-III) was assessed as the gene-wise Cox 

univariate P-value (y-axis), stratified by RNA heterogeneity quadrant (x-axis). Boxplots 

represent the median, 25th and 75th percentiles and the vertical bars span the 5th to the 

95th percentiles. Statistical significance was tested with a two-sided Wilcoxon signed-rank 

test. d, Cross-cohort prognostic significance of random signatures. 1000 random 

signatures were developed in the TCGA RNAseq cohort (n = 469 LUAD patients, stage I-

III), derived using 20 genes randomly sampled from each RNA heterogeneity quadrant, 

then tested for prognostic ability across four microarray cohorts comprised of stage I-III 

LUAD patients (Shedden et al n = 442, Okayama et al n = 147, Der et al n = 127, 

Rousseaux et al n = 85). 

  

 

Fig. 3 | Clonal gene selection improves prognostic accuracy over conventional biomarker 

design and beyond clinicopathological risk factors 

a, Prognostic value of conventional versus clonal biomarker design. Prognostic signature 

development requires gene selection, followed by the application of a machine learning 

algorithm (see Extended Data 6a). Several conventional methods are replicated from 

published studies10,14,33,34 (orange), and a clonal version of each signature is generated in 

parallel (blue). In addition, a de novo strategy, prioritizing the selection of clonally 

expressed genes (see Extended Data 6b-d and Methods for details), is used to derive the 

Outcome Risk Associated Clonal Lung Expression (ORACLE) biomarker. All signatures 

are developed in the TCGA RNAseq dataset (n=469 LUAD patients, stage I-III). Prognostic 

accuracy of the resulting signatures was assessed in the Uppsala RNAseq dataset (n=103 

LUAD patients, stage I-III) as an independent cohort of patients. 

b, Prognostic value of ORACLE assessed in a meta-analysis across five validation cohorts 

of LUAD patients. Univariate Cox analysis was performed in one RNAseq dataset 

(Uppsala) and four microarray datasets (Shedden et al, Okayama et al, Der et al, 

Rousseaux et al). Hazard ratios with a 95% confidence interval are shown for each cohort 

and are plotted on a natural log scale. The diamond indicates the hazard ratio for the meta-

analysis of five validation cohorts. c, Prognostic value over known risk factors. Multivariate 

Cox analysis was performed in the Uppsala RNAseq dataset (n=103 LUAD patients, stage 

I-III), incorporating ORACLE risk score, tumour stage, therapy status, patient age, WHO 

performance status, smoking status, patient gender and Ki67 staining percentage. Hazard 



 

 

ratios with a 95% confidence interval are shown for each variable and are plotted on a 

natural log scale. d, Prognostic value in stage I patients. The ability of substaging criteria 

(left) versus ORACLE (right) to split patients into prognostically informative groups is 

tested in stage I patients. Kaplan-Meier plots with log-rank P-values calculated in the 

Uppsala RNAseq dataset (n=60 stage I LUAD patients). All statistical tests were two-sided. 

 

Fig. 4 | Pan-cancer prognostic relevance and the genomic underpinning of RNA 

heterogeneity quadrants 

a, Survival association of RNA heterogeneity quadrants across cancer types. Gene-wise 

pan-cancer survival associations are evaluated by NSCLC RNA heterogeneity quadrants. 

Z-scores were sourced from the PRECOG database42 (n = 17,808 tumours from 39 

malignant histologies). A |z| score > 1.96 is equivalent to a two-sided P < 0.05. Boxplots 

represent the median, 25th and 75th percentiles and the vertical bars span the 5th to the 

95th percentiles. Statistical significance was tested with a two-sided t-test. b, Survival 

association of RNA heterogeneity quadrants for individual cancer types. Each point 

corresponds to 1 out of 33 cancer types sourced from the PRECOG database42 (n = 

17,808 tumours from 39 malignant histologies). The number of prognostically significant 

genes (|z| score > 1.96, equivalent to a P value < 0.05) per NSCLC RNA heterogeneity 

quadrant is indicated for each cancer type as non-significant (gray), significantly enriched 

(red, odds ratio > 1) or significantly depleted (blue, odd ratio < 1). Odds ratios are plotted 

on a natural log scale. Statistical significance was tested with a two-sided Fisher’s exact 

test. No corrections were made for multiple comparisons. c, Gene expression ITH 

correlated with copy-number ITH. The scatter plot shows the Spearman correlation 

between patient-wise RNA-ITH scores and patient-wise SCNA-ITH scores calculated in 

the TRACERx cohort (n = 28 LUAD patients, stage I-III).d, Association between subclonal 

chromosomal copy-number changes and gene expression. This analysis was performed 

using 118,943 paired SCNA and RNA values in TRACERx (143 regions from 44 NSCLC 

tumours; sample selection criteria described in Methods). Boxplots represent the median, 

25th and 75th percentiles and the vertical bars span the 5th to the 95th percentiles. 

Statistical significance was tested with a two-sided paired t-test. e, Enrichment or depletion 

of specific copy number states by heterogeneity quadrant. All genes were assigned a copy 

number state across all samples (clonal/subclonal gain or loss, or no change). Genes were 

then tested for enrichment or depletion of a specific category by RNA heterogeneity 

quadrant. Odds ratios are plotted on a natural log scale. Statistical significance was tested 



 

 

with a two-sided Fisher’s exact test. f, Pathway analysis on Q4 genes using Reactome, 

showing the top 5 pathways most significantly enriched in Q4 genes (low intra- and high 

inter-tumour heterogeneity). 

  



 

 

Extended Data Figure Legends 

 

Extended Data 1: Patient cohorts included in the study 

a, CONSORT diagram for patient recruitment (left) and composition by tumour stage 

(right) of the TRACERx cohort. b, Patient composition of two RNAseq datasets: The 

Cancer Genome Atlas cohort (left), and the Uppsala cohort (right). c, Patient composition 

of four microarray datasets: Der et al, GSE50081 (top left); Okayama et al, GSE31210 

(top right); Rousseaux et al, GSE30219 (bottom left); Shedden et al, GSE68465 (bottom 

right). Tumour stage (x-axis) and therapy status (colour) is indicated for all patient 

composition bar charts. LUAD = lung adenocarcinoma, LUSC = lung squamous cell 

carcinoma. 

 

Extended Data 2: Analysis of the most variably expressed genes in TRACERx 

a, The dendrogram and coloured heatmap (top) shows the hierarchical clustering of 

tumour regions (columns) in the TRACERx multi-region RNAseq cohort (156 tumour 

regions, 48 NSCLC patients, stage I-III) according to the top 500 variably expressed genes 

(rows). The sparse heatmap (bottom) shows tumour regions (coloured by histology) per 

patient (rows). b, Kaplan-Meier survival analysis of the largest two patient clusters from 

the dendrogram in (a). Statistical significance was tested with a two-sided log-rank test. c, 

The hierarchical clustering approach taken to quantify discordance rates for published 

signatures is illustrated for a non-RNAseq signature, Kratz et al10,  in TRACERx (n = 28 

LUAD patients, stage I-III). As previously described by Gyanchandani et al5, this clustering 

approach provides a metric that is invariant of gene expression profiling platform. For a 

given number of clusters, clustering concordance was quantified as the percentage of 

TRACERx patients with all tumour regions in the same cluster. This analysis was run 

iteratively from 2 to 28 clusters; 28 is the total number of TRACERx LUAD patients, hence 

clustering concordance of 100% at 28 clusters is the theoretical upper limit using this 

metric. The dendrogram and coloured heatmap (top) shows the clustering of tumour 

regions (columns) according to the expression pattern of genes comprising the prognostic 

signature (rows). The grayscale heatmap (bottom left) shows tumour regions per patient 

(rows). For a range of clusters (2, 3, 14, 28), the coloured bars (middle left) show the 

assignment of tumour regions to clusters, the grayscale bars (bottom right) show which 

patients have their tumour regions discordantly assigned (gray) across clusters, and the 

pie charts (middle right) show the percentage of discordantly classified patients. d, 



 

 

Discordance rates for 9 published LUAD prognostic signatures7–15 plotted as the 

percentage of patients with tumour regions clustering together against the number of 

clusters. Vertical dashed lines mark a range of clusters (2, 3, 14, 28) as highlighted in (c). 

 

Extended Data 3: Intra- and inter-tumour RNA heterogeneity scores 

a, Gene-wise and patient-wise RNA-ITH scores were calculated using multi-region 

RNAseq data (normalized count values) from TRACERx tumours (n=28 LUAD patients, 

89 tumour regions, stage I-III). For a given tumour, the standard deviation of expression 

values for a particular gene across tumour regions was calculated yielding a gene-specific, 

patient-specific measure of RNA-ITH (σg,p). This was repeated for all genes, then all 

tumours, generating a matrix of σg,p values. Gene-wise RNA-ITH values are summarised 

as the average (median) value per gene across all tumours in the cohort (σg). Conversely, 

patient-wise RNA-ITH values are summarised as the average (median) value per tumour 

across all expressed genes (σp). Dashed lines indicate mean values. b, The scatter plots 

show the Spearman correlation between the chosen metric of intra-tumour expression 

variability (standard deviation) and alternative metrics, median absolute deviation (left) or 

coefficient of variation (right), as calculated in the TRACERx cohort (n=28 LUAD patients, 

89 tumour regions, stage I-III). c, Diagram illustrating the calculation of gene-wise inter-

tumour RNA heterogeneity scores through the random sampling of tumour regions from 

the TRACERx cohort (n=28 LUAD patients, 89 tumour regions, stage I-III; see Methods). 

d, The scatter plot shows the Spearman correlation between inter-tumour RNA 

heterogeneity scores calculated in TRACERx (n=28 LUAD patients, 89 tumour regions, 

stage I-III), randomly sampled to yield a sham single-biopsy cohort, and TCGA (n = 469 

LUAD patients, stage I-III), a true single-biopsy cohort. 

 

Extended Data 4: Clustering concordance and published prognostic signatures 

a, Clustering concordance scores calculated in TRACERx (n=28 LUAD patients, 89 

tumour regions, stage I-III) using the same method taken to estimate the sampling bias of 

microarray signatures as described by Gyanchandani et al5 (see Extended Data 2c-d). For 

each gene, a curve is calculated for the number of patients with all regions in the same 

cluster against the number of clusters (2-28 clusters). Curves for five genes (minimum = 

CKMT2, lower quartile = CYSLTR2, median = MCM2, upper quartile = MFSD1, maximum 

= HOXC11) are shown (top), in addition to summarised clustering concordance scores for 

all genes (bottom). b, Gene-wise clustering concordance scores stratified by RNA 



 

 

heterogeneity quadrant, both calculated in TRACERx (n=28 LUAD patients, 89 tumour 

regions, stage I-III). Boxplots represent the median, 25th and 75th percentiles and the 

vertical bars span the 5th to the 95th percentiles. Statistical significance was tested with a 

two-sided Wilcoxon signed rank sum test. “*” indicates a P-value < 0.05, “**” indicates a 

P-value < 0.01, “***” indicates a P-value < 0.001. 

 

Extended Data 5: Analysis of published prognostic signatures for LUAD by RNA 

heterogeneity quadrant 

a, The composition of published prognostic signatures by RNA heterogeneity quadrant, 

plotted in order of increasing percentage of Q4 genes (low intra- and high inter-tumour 

heterogeneity). b, Percentage of genes expected (total no. genes, as indicated in Fig. 2a) 

versus observed (in 9 published LUAD prognostic signatures7–15) per RNA heterogeneity 

quadrant. Statistical significance was tested with a two-sided Fisher’s exact test. The 

ability of published prognostic genes for LUAD (the combined gene list from nine published 

signatures, 242 unique genes) to maintain prognostic value across patient cohorts is 

assessed (using Cox univariate survival analysis) in four microarray datasets: Shedden et 

al, GSE68465 (c); Okayama et al, GSE31210 (d); Der et al, GSE50081 (e); Rousseaux et 

al, GSE30219 (f). Boxplots represent the median, 25th and 75th percentiles and the 

vertical bars span the 5th to the 95th percentiles. Statistical significance was tested with a 

two-sided Wilcoxon signed rank sum test. “*” indicates a P-value < 0.05, “**” indicates a 

P-value < 0.01, “***” indicates a P-value < 0.001. 

 

Extended Data 6: Prognostic signature design 

a, Biomarkers are designed using state-of-the-art signature construction methods, 

replicated from Shukla et al14 (signature A and B), Chen et al33 (signature C), Reka et al34 

(Signature D) and Kratz et al10 (signature E). In parallel, the “prognostic significance” filters 

(present in each signature construction method) were substituted with “clonal expression” 

filters, generating corresponding clonal signatures (signatures A-clonal, B-clonal, C-clonal, 

D-clonal, and E-clonal). Published signature construction methods are indicated in orange, 

novel methods integrating clonal biomarker design are indicated in blue. All signatures are 

developed in TCGA LUAD patients (n=469, stage I-III) as the training dataset. b, Flow 

diagram illustrating the gene selection steps for ORACLE. Criteria to identify prognostic 

and clonally expressed genes, and the number of genes selected at each step are 

indicated. c, Optimization of the number of genes to select at the clustering concordance 



 

 

step through 10-fold cross-validation in the training cohort (TCGA, n=469 LUAD patients, 

stage I-III). The optimal number of genes, with the lowest cross-validation error, is shown 

by the vertical red line. d, The cut-off to dichotomize the ORACLE risk-score into ‘high’ 

and ‘low’ risk groups is optimized in the training cohort (TCGA, n=469 LUAD patients, 

stage I-III). The horizontal blue line indicates a log-rank P-value = 0.01 and the optimal 

cut-off is shown by the vertical red line. Statistical significance was tested with a two-sided 

log-rank test. e, Tumour sampling bias of the ORACLE signature assessed using multi-

region RNAseq data from TRACERx (n=28 LUAD patients, 89 tumour regions, stage I-III). 

Each point represents a single tumour region, vertical lines display the range for each 

patient, and patients are ordered by predicted survival risk score. Points are coloured 

according to the risk classification of tumour regions within a patient: concordant low-risk 

(blue), concordant high-risk (red), or discordant (gray). 

 

Extended Data 7: Risk stratification using ORACLE 

a, Kaplan-Meier plot of ORACLE in the RNAseq-based validation cohort (Uppsala, n=103 

LUAD patients, stage I-III). Statistical significance was tested with a two-sided log-rank 

test. The ability of substaging criteria (b) and ORACLE (c) to split patients into 

prognostically informative groups is tested in stage I patients using the updated TNM 

version 8 criteria37, shown as Kaplan-Meier plots for the Uppsala RNAseq dataset (n=53 

LUAD patients, stage I, TNMv8). Statistical significance was tested with a two-sided log-

rank test. d, The distribution of ORACLE risk scores by disease stage, shown for the 

Uppsala cohort (n=103 LUAD patients, stage I-III) and the MET500 cohort38 (n=8 

metastatic samples from patients with LUAD primary tumours). Boxplots represent the 

median, 25th and 75th percentiles and the vertical bars span the 5th to the 95th 

percentiles. Statistical significance was tested with a Wilcoxon signed rank sum test. No 

corrections were made for multiple comparisons. e, The scatter plot shows the Spearman 

correlation between Ki67 staining % and ORACLE risk-scores in the TRACERx cohort 

(n=28 LUAD patients, 89 tumour regions, stage I-III). 

 

Extended Data 8: ORACLE as a cancer cell expression signature 

a, Spearman correlations between the infiltration of immune cell subsets, calculated from 

RNAseq data using the method described by Danaher et al39, and ORACLE risk-scores in 

the TCGA dataset (n=469 patients, stage I-III). b, The scatter plot shows the Spearman 

correlation between ORACLE risk score and tumour purity assessed from whole-exome 



 

 

sequencing data using ASCAT, as described by Van Loo et al40, in TRACERx (n=28 LUAD 

patients, 84 tumour regions, stage I-III). c, Lambrechts et al41 performed single-cell 

RNAseq on 52,698 cells sourced from 5 NSCLC patients, then defined 7 clusters of 

stromal cell genes and provided a per-cluster expression measure for every gene. The 

relative expression levels  (y-axis) for each stromal cluster (coloured by cell-type, see 

figure legend) is plotted for all 23 genes comprising the ORACLE signature (bottom 3 

rows). To aid interpretation, a marker gene for each of the 7 stromal cell clusters is also 

plotted (top row) for comparison: alveolar (AGER), B cell (MS4A1), epithelial (EPCAM), 

fibroblast (COL6A2), myeloid (CD68), T cell (CD3D), and vascular (FLT1) cell-types. d, 

Pearson correlations between the expression of individual ORACLE genes and copy-

number state at the corresponding gene locus in the TRACERx cohort (n=28 LUAD 

patients, 89 tumour regions, stage I-III). Significant correlations (P<0.05) are marked in 

red, non-significant correlations are marked in blue. 

 

Extended Data 9: Patient-level estimates of RNA-ITH and association with tumour cellular 

composition 

a, RNA-ITH scores calculated from each tumour by sampling one to N biopsies (where N 

is the total number of biopsies yielded by that tumour) in TRACERx (n=48 NSCLC patients, 

156 tumour regions, stage I-III). For each patient the RNA-ITH score (y-axis) is plotted for 

all possible subgroups of tumour regions against the number of biopsies (x-axis). The 

mean (red line) and standard deviation (blue lines) are shown for each tumour. b, The 

scatter plots show the Spearman correlation between patient-level RNA-ITH scores and 

RNAseq-based immune infiltration measures, calculated from RNAseq data using the 

method described by Danaher et al39 in TRACERx (n=48 NSCLC patients, 156 tumour 

regions, stage I-III). c, The scatter plot shows the Spearman correlation between patient-

level RNA-ITH scores and tumour purity assessed from whole-exome sequencing data 

using ASCAT, as described by Van Loo et al40, in TRACERx (n=48 NSCLC patients, 156 

tumour regions, stage I-III). 

 

Extended Data 10: Pathway analysis by RNA heterogeneity quadrant 

The top 10 Reactome pathways for each RNA heterogeneity quadrant are plotted: low 

inter- and high intra- (Q1, a), low inter- and low intra- (Q2, b), high inter- and high intra- 

(Q3, c), high inter- and low intra- (Q4, d). 

 



 

 

  



 

 

Supplementary Table Legends 

 

Table S1: cohort features 

Overview of sample size, patient follow up and overall survival events for the NSCLC 

expression data-sets used in the study. 

 

Table S2: RNA heterogeneity quadrants 

RNA intra- and inter-tumour heterogeneity scores calculated in the TRACERx cohort. 

 

Table S3: published prognostic signatures 

Gene lists from 9 published signatures for LUAD7–15. 

 

Table S4: derived prognostic signatures 

Gene lists and model coefficients for the ‘conventional’ and ‘clonal’ biomarkers derived in 

the study. 

 

Table S5: ORACLE 

Gene list and model coefficients for the Outcome Risk Associated Clonal Lung Expression 

signature. Descriptions of gene function, and references to usage in published prognostic 

signatures are also provided. 

 

Table S6: pancancer prognostic value 

Survival association of RNA heterogeneity quadrants for individual cancer types from the 

pan-cancer PRECOG42 and Uhlen et al43 datasets. The number of prognostically 

significant genes (|z| score > 1.96, or P < 0.05) per NSCLC RNA heterogeneity quadrant 

is indicated for each cancer type as non-significant, significantly enriched (odds ratio > 0) 

or significantly depleted (odd ratio < 0). Statistical significance was tested with a two-sided 

Fisher’s exact test. No corrections were made for multiple comparisons. 

 

Table S7: reactome pathway analysis 

Pathway analysis genes by RNA heterogeneity quadrant using Reactome. 

   



 

 

Methods 

  

NSCLC Datasets. 

  

TRACERx WES and RNAseq. Tumour samples and clinical data were collected from 100 

NSCLC patients enrolled in the TRACERx lung cancer study and subjected to complete 

surgical resection with curative intent23. The TRACERx study (Clinicaltrials.gov no: 

NCT01888601) is sponsored by University College London (UCL/12/0279) and has been 

approved by an independent Research Ethics Committee (13/LO/1546). Multi-region 

sampling was performed to obtain DNA and RNA sequentially from the same tissue. 

Whole exome sequencing was performed on DNA samples, as described by Jamal-

Hanjani et al23. RNA was extracted from the TRACERx 100 cohort using a modification of 

the AllPrep kit (Qiagen), as previously described23, and RNA integrity was assessed by 

TapeStation (Agilent Technologies). Of the cohort of 100 TRACERx tumours, RNA 

samples of sufficient quality (RNA integrity score ≥5) were obtained for 174 regions from 

68 tumours and were sent to the Oxford Genomics Centre for whole-RNA (RiboZero 

depleted) paired-end sequencing. Of these, at least two regions were available from 48 

tumours, yielding the TRACERx RNA M-seq cohort (Extended Data 1a). Alignment was 

performed using the STAR package54 version 2.5.2b to map reads to the human genome 

(GRCh37/hg19). Transcript expression was quantified using the RSEM package55 version 

1.3.0 to generate count and Transcript Per Million (TPM) expression values. An expression 

filter was applied, keeping genes with an expression value of at least 1 TPM in at least 

20% (30/156) of tumour samples in the TRACERx multi-region RNAseq dataset. In total, 

16,286 genes were filtered out of the 25,343 unique genes outputted by RSEM. Lastly, a 

variance stabilizing transformation was applied to counts from filtered genes using the 

DESeq2 package56 version 1.14.1, assuming a negative binomial distribution for count 

values, to output homoscedastic and library size normalized count values.  

  

TCGA RNAseq. Pre-processed RNAseq and clinical data were downloaded for 959 

NSCLC patients (469 LUAD + 490 LUSC) enrolled in The Cancer Genome Atlas (TCGA) 

research network lung trials24,25 using the TCGA2STAT package57 version 1.2. An 

expression filter was applied, keeping genes with at least 0.5 counts per million in at least 

2 tumour samples, before normalized count values were obtained for filtered genes using 

a variance stabilizing transformation from the DESeq2 package56 version 1.14.1. 



 

 

   

Uppsala II RNAseq. Pre-processed Uppsala RNAseq and clinical data were downloaded 

for 170 NSCLC patients (103 LUAD + 67 LUSC) enrolled in the Uppsala NSCLC II cohort26 

from the Gene Expression Omnibus (GSE81089). ENSEMBL gene IDs were converted to 

HGNC IDs using the biomaRt package58 version 2.30.0 and maximum values were 

selected for multi-mapping probes. Genes, identified as lowly expressed in the TRACERx 

RNAseq dataset were filtered, then a variance stabilizing transform was applied using the 

DESeq2 package56 version 1.14.1 to output normalized count values. Additional clinical 

information (therapy status, patient age, WHO performance status, smoking status, patient 

gender and Ki67 staining) was provided in private communication with the authors. 

  

Microarray cohorts. Microarray data (.RMA files) and clinical data were downloaded from 

the Gene Expression Omnibus for four patient cohorts: 442 LUAD patients enrolled by 

Shedden et al16 (GSE68465); 85 LUAD patients enrolled by Rousseaux et al29 

(GSE30219); 147 LUAD patients enrolled by Okayama et al28 (GSE31210); 127 LUAD 

patients enrolled Der et al30 (GSE50081). Affy IDs were mapped to HGNC IDs, and the 

“best” probe was selected using the Jetset package59 version 3.4.0. 

 

MET500. Gene expression data was downloaded via dbGaP (accession number 

phs000673.v2.p1.) for metastatic samples from patients in the MET500 cohort38 with 

LUAD primary tumours and RNAseq data available (n=8). Alignment was performed using 

STAR package54 version 2.5.2 to map reads to the human genome (Ensembl GRCh38-

release-89). Transcript expression was quantified using the RSEM package55 version 

1.3.0 to generate count expression values. Normalized count values were obtained using 

a variance stabilizing transformation from the DESeq2 package56 version 1.14.1. 

  

Pan-cancer Datasets 

  

PRECOG. Pan-cancer gene-wise prognostic values were downloaded from the PRECOG 

resource (http://precog.stanford.edu). Gentles et al42 had applied univariate Cox 

regression to microarray data from ~18,000 tumours across 39 cancer types, quantifying 

gene-wise survival associations as Z-scores (a |z| score > 1.96 is equivalent to a two-sided 

P < 0.05). 

 

http://precog.stanford.edu/


 

 

Human Pathology Atlas. As part of the Human Protein Atlas effort 

(www.proteinatlas.org/pathology), Uhlen et al43 had calculated gene-wise survival 

associations as log-rank P values for RNAseq datasets from 17 different cancer types. 

The pan-cancer gene-wise prognostic values were downloaded as supplementary 

information from the Uhlen et al43. 

 

LUAD Prognostic Signatures 

  

Literature search. A Pubmed search was performed to identify articles describing 

prognostic gene expression signatures for LUAD Each article was manually reviewed: if 

the list of genes comprising the prognostic signature was fully specified, then the signature 

was included in subsequent analysis. This process yielded two RNAseq signatures12,14, 

six microarray signatures7–9,13,15, and one qPCR signature10 (Extended Data 5a). Several 

of the gene names from microarray signatures were updated, to ensure compatibility with 

RNAseq data (see Supplementary Table 3). 

  

Sampling bias of RNAseq signatures. Two RNAseq LUAD prognostic signatures12,14 were 

assessed for tumour sampling bias in the TRACERx cohort (n = 28 LUAD patients, stage 

I-III), by calculating a risk score for each tumour region, then classifying each patient as 

“concordant low”, “concordant high” or “discordant” survival risk. For the signature 

described by Shukla et al14, regression coefficients were re-derived from supplementary 

data provided in the original publication, then applied to TRACERx TPM data, using the 

risk score cut-off specified in the original publication to stratify tumour regions as “high” or 

“low” risk. For the signature described by Li et al12, the method to calculate risk scores 

from “immune-related gene pairs” was applied to TRACERx TPM data, using the median 

risk score in the TRACERx cohort as the cut-off to stratify tumour regions as “high” or “low” 

risk. 

  

Sampling bias of RNAseq and non-RNAseq signatures. The sampling bias of nine LUAD 

prognostic signatures7–15 was assessed in the cohort of TRACERx LUAD patients using a 

metric invariant of gene expression profiling platform. Hierarchical clustering was 

performed for each prognostic signature using the Ward method on the Manhattan metric, 

as in the method described by Gyanchandani et al5. For a given number of clusters, 

clustering concordance was quantified as the percentage of TRACERx patients with all 

http://www.proteinatlas.org/pathology


 

 

tumour regions in the same cluster. This analysis was run iteratively from 2 to 28 clusters; 

28 is the total number of TRACERx LUAD patients, hence clustering concordance of 100% 

at 28 clusters is the theoretical upper limit using this metric. 

 

RNA heterogeneity scores 

Intra-tumour RNA heterogeneity scores. Gene-wise and patient-wise RNA-ITH scores 

were calculated using multi-region RNAseq data (normalized count values) from 

TRACERx tumours. For a given tumour, the standard deviation of expression values for a 

particular gene across tumour regions was calculated yielding a gene-specific, patient-

specific measure of RNA-ITH (σg,p). This was repeated for all genes, then all tumours, 

generating a matrix of σg,p values (see Extended Data 3a). Gene-wise RNA-ITH values 

are summarised as the average (median) value per gene across all tumours in the cohort 

(σg). Conversely, patient-wise RNA-ITH values are summarised as the average (median) 

value per tumour across all expressed genes (σp). Consideration of median absolute 

deviation (MAD), and coefficient of variation (CV), as alternative metrics for the 

quantification of gene-wise RNA-ITH, found these to show good agreement with scores 

based on the standard deviation (see Extended Data 3b). 

Inter-tumour RNA heterogeneity scores. For the TRACERx data-set, an inter-tumour 

heterogeneity measure is derived for each gene by randomly sampling one region per 

patient and taking the standard deviation across the resulting single-biopsy cohort, then 

repeating this process 10 times to take the average score across iterations (see Extended 

Data 3c). We applied the same method to the TCGA NSCLC data-set, a true single-biopsy 

cohort, finding good agreement with scores calculated within the TRACERx cohort 

(PMCC=0.94, P<0.001, Extended Data 3d), which indicates calculation of inter-tumour 

heterogeneity scores is reproducible. 

RNA heterogeneity quadrants. Splitting intra-tumour RNA heterogeneity and inter-tumour 

RNA heterogeneity by their respective average (mean) value generates RNA 

heterogeneity quadrants. 

Pathway analysis. 



 

 

Pathway enrichment analysis was performed on genes in LUAD Q1-Q4 quadrants using 

the ReactomePA package60 version 1.24.0. Significance was evaluated based on 

Bonferroni-adjusted P-value < 0.01. 

  

Random signature analysis 

 

Probe sets were matched to gene symbols using the Jetset package59 version 3.4.0, and 

all four microarray cohorts were subsetted to the genes present in all four cohorts (7720 

genes in total, Q1 = 327, Q2 = 4912, Q3 = 1983, Q4 = 498). From each quadrant, 20 

genes were randomly picked, trained in the TCGA RNAseq cohort (n = 469 LUAD patients, 

stage I-III), and then tested for the ability to reproducibly associate with survival across all 

4 microarray cohorts (combined n = 801 LUAD patients, stage I-III). Patients were stratified 

based on the median value of the first principle component, as in the method described 

by Venet et al31. This approach was repeated 1000 times. 

  

Copy number analysis. 

Tumour purity. As previously described for the TRACERx cohort23, tumour purity was 

quantified by an exome-sequencing based metric generated using ASCAT40. 

SCNA calling. As previously described for the TRACERx cohort23, segmented allele-

specific copy number states were defined based on the WES data. To determine genome-

wide copy number gain and loss, copy number data for each sample was divided by the 

sample mean ploidy, and log2-transformed. Gain and loss were defined as log2(2.5/2) and 

log2(1.5/2), respectively. Gene-level clonal copy number gain or loss was defined as all 

regions from an individual tumour showing either gain or loss, in the same direction. Gene-

level subclonal copy number gain or loss was defined as at least one region but not all 

regions from an individual tumour showing copy number gain or loss. Only subclonally 

gained or lost copy number segments were used to analyse the effect of copy number 

alterations on gene expression. To ensure proper copy-number variation, only samples 

with an absolute copy number difference of 0.5 on a log2 scale were included. 

Linking subclonal SCNA to gene expression changes. We identified genes with a 

heterogeneous copy number state between regions of an individual tumour. We then 

examined the paired RNAseq data for evidence of an expression difference between copy 



 

 

number aberrant and non-aberrant tumour regions for the corresponding transcripts by 

subtracting the log2 expression value of non-aberrant genes from the aberrant genes. 

Statistical significance was tested with a two-sided paired t-test. SCNA-ITH scores were 

determined as previously described for the TRACERx cohort23.  

Enrichment of SCNA per heterogeneity quadrant. To determine enrichment of genes with 

clonal gain across all four heterogeneity quadrants, we first classify all genes within an 

individual tumour as either “clonal gain” or “not clonal gain”, based on whether or not the 

specific gene demonstrate copy number gain across all tumour regions. For each gene, 

we determine the percentage of samples that demonstrate clonal gain, then determine if 

the top 25% of genes most commonly subjected to clonal copy number gain are enriched 

for genes in each heterogeneity quadrant relative to the 25% of genes least commonly 

subjected to clonal copy number gain. Statistical significance was tested with a two-sided 

Fisher’s exact test. 

Prognostic signature construction 

Stepwise regression. A previously published prognostic signature construction pipeline, 

described by Shukla et al14, was replicated. In the training cohort (TCGA, n = 469 LUAD 

patients, stage I-III) univariate Cox regression analysis was performed, then a primary 

prognostic filter was applied (univariate Cox analysis P < 0.00025) identifying 108 genes 

to take forward for signature construction. Next, a secondary prognostic filter (univariate 

Cox analysis FDR < 0.02) identified 15 genes that were taken as input for forward 

conditional stepwise (AIC) regression, yielding a 6-gene prognostic signature (“Signature 

A”); alternatively, stepwise (BIC) regression yielded a 3-gene signature (“Signature B”). In 

parallel, a secondary “clonal expression” filter (selecting Q4 genes using heterogeneity 

scores calculated in TRACERx, n = 28 LUAD patients, stage I-III) also identified 15 genes, 

yielding a 7-gene signature by stepwise (AIC) regression (“Signature A-clonal”); stepwise 

(BIC) regression generated a 6-gene signature (“Signature B-clonal”). In the validation 

cohort (Uppsala, n = 103 LUAD patients, stage I-III), a linear combination of gene 

expression values, weighted by stepwise regression coefficients, was used to calculate a 

risk score for each patient. Patients were classified as “high” or “low” risk using the median 

risk score as a cut-off value. Stepwise regression was performed using the MASS package 

(https://CRAN.R-project.org/package=MASS) version 7.3.48 to select a prognostic 

https://cran.r-project.org/package=MASS


 

 

signature by the Akaike Information Criterion (“Signature A” and “Signature A-clonal”) or 

by the Bayesian Information Criterion (“Signature B” and “Signature B-clonal”). 

Tree classification. A previously published prognostic signature construction pipeline, 

described by Chen et al33, was replicated. In the training cohort (TCGA, n = 469 LUAD 

patients, stage I-III), genes reported to be associated with invasive activity61 (656 could be 

recovered with HUGO gene symbols out of 672 genes reported in the original study) were 

selected as a primary prognostic filter. Next, a secondary prognostic filter was used 

(univariate Cox analysis P < 0.00005), as in the original study33, selecting the 8 genes with 

highest prognostic significance in the training cohort. These were taken as input for tree 

classification, yielding a 8-gene prognostic signature (“Signature C”). In parallel, a 

secondary “clonal expression” filter (selecting Q4 genes using heterogeneity scores 

calculated in TRACERx, n = 28 LUAD patients, stage I-III) also identified 9 genes, yielding 

a 9-gene signature by tree classification (“Signature C-clonal”). In the validation cohort 

(Uppsala, n = 103 LUAD patients, stage I-III), patients were classified as “high” or “low” 

risk using predictions from the tree models. Tree classification was performed using the 

rpart package (https://CRAN.R-project.org/package=rpart) version 4.1.13. 

Random forest regression. A previously published prognostic signature construction 

pipeline, described by Reka et al34, was replicated. First, 97 genes associated with an 

EMT secretory phenotype, listed by Reka et al34, were selected in the training cohort 

(TCGA, n = 469 LUAD patients, stage I-III) as a primary prognostic filter. A random forest 

model was fitted using all 97 genes, then the resulting variable importance scores were 

used as a secondary prognostic filter to select and re-fit a model using the top 10 most 

informative genes, yielding a 10-gene prognostic signature (“Signature D”). In parallel, a 

secondary “clonal expression” filter (selecting Q4 genes using heterogeneity scores 

calculated in TRACERx, n = 28 LUAD patients, stage I-III) identified 9 genes, yielding a 9-

gene signature by random forest regression regression (“Signature D-clonal”). The 

random forest models were then used to calculate a risk score for each patient in the 

validation cohort (Uppsala, n = 103 LUAD patients, stage I-III). Patients were classified as 

“high” or “low” risk using the median risk score as a cut-off value. Random forest 

regression is performed using the randomForestSRC package62 version 2.5.1. 

Elastic-net (lasso) regression. A previously published prognostic signature construction 

pipeline, described by Kratz et al10, was replicated. First, a list of genes (249 genes) was 

https://cran.r-project.org/package=rpart


 

 

collated from previously published LUAD prognostic signatures7–15; these genes were 

selected in the training cohort (TCGA, n = 469 LUAD patients, stage I-III) as a primary 

prognostic filter. Next, a short-list of cancer-related genes - previously identified by manual 

review10,13 - was used as a secondary prognostic filter, identifying 56 genes for input to 

lasso regression, which then yielded a 24-gene prognostic signature (“Signature E”). In 

parallel, a secondary “clonal expression” filter (selecting Q4 genes using heterogeneity 

scores calculated in TRACERx, n = 28 LUAD patients, stage I-III) identified 44 genes, 

yielding a 14-gene signature by lasso regression (“Signature E-clonal”). In the validation 

cohort (Uppsala, n = 103 LUAD patients, stage I-III), a linear combination of gene 

expression values, weighted by lasso regression coefficients, was used to calculate a risk 

score for each patient. Patients were classified as “high” or “low” risk using the median risk 

score as a cut-off value. Elastic-net regression is performed using the glmnet package63 

version 2.0.13 applying the lasso penalty (alpha=1).  

ORACLE signature. An analysis pipeline was developed to select genes that are both 

prognostic and clonally expressed on the basis of four criteria (Extended Data 6b). First, 

starting with all expressed genes (19,024 genes) in the TCGA cohort (n = 469 LUAD 

patients, stage I-III), genes with a below median expression were removed (9,512/19,024 

genes). This expression threshold is commonly used as a pre-processing step in cancer 

expression studies64, as lowly expressed genes are more vulnerable to noise due to the 

detection limits of expression profiling technologies. Second, significantly prognostic 

genes (2,023/9,512) were identified as genes correlated with overall survival (Cox 

univariate P-value < 0.05, not corrected for multiple hypothesis testing), a standard method 

for identifying significantly prognostic genes14,33. Third, to restrict RNA-ITH, Q4 genes 

were selected (176/2,023 genes) using heterogeneity scores calculated in TRACERx (n = 

28 LUAD patients, stage I-III). Fourth, we scored the “clustering concordance” of each 

gene (Extended Data 4a) and picked the highest scoring genes (90/176 genes) as an 

additional step to select clonally expressed genes. The optimal number of genes to take 

forward at this step was determined using ten-fold cross-validation in the training cohort 

(Extended Data 6c). Using the genes selected by these four criteria, a prognostic signature 

was generated through elastic-net (lasso) regression against overall survival. This 

machine learning algorithm performs further gene selection, and also calculates a model 

coefficient for each gene, yielding an Outcome Risk Associated Clonal Lung Expression 

signature (23/90 genes, Supplementary Table 5). As is standard for prognostic signatures 



 

 

with an underlying linear model, a molecular risk score was calculated for each patient as 

a linear combination of gene expression values, weighted by the model coefficients fitted 

in the training cohort. To dichotomise the continuous risk score variable, and classify 

patients as “high” or “low” molecular risk, a threshold was determined in the training cohort 

as the average (median) risk score value amongst significant (log-rank P < 0.01) cut-off 

values (Extended Data 6d). To the best of our knowledge, only 30% of the list of genes 

comprising ORACLE (7/23 genes, Supplementary Table 5) has previously been used in 

LUAD prognostic signatures (ASPM, FURIN, PLK1, PNP, PRKCA, PTTG1, TPBG). For 

the meta-analysis univariate Cox regression was performed on ORACLE risk scores 

determined in the Uppsala RNAseq cohort and in the 4 microarray cohorts (Fig. 3b). In the 

microarray cohorts, 19/23 genes were available for analysis (ASPM, CDCA4, FURIN, 

GOLGA8A, ITGA6, JAG1, LRP12, MAFF, MRPS17, PLK1, PNP, PPP1R13L, PRKCA, 

PYGB, SCPEP1, SLC46A3, SNX7, TPBG, XBP1). Weights applied to ORACLE genes 

were not modified across cohorts. Meta-analysis was performed using the rmeta package 

(https://CRAN.R-project.org/package=rmeta) version 3.0. 

 

Stromal expression. 

 

Immune infiltration scores. Bulk RNAseq data from TCGA and the TRACERx cohort was 

used to calculate infiltration scores for 16 immune subsets using the method described by 

Danaher et al39. 

 

scRNAseq data. Lambrechts et al performed single-cell RNAseq on 52,698 cells sourced 

from 5 NSCLC patients, then defined 7 clusters of stromal cell genes and provided a per-

cluster expression measure for every gene. Gene-wise relative expression levels were 

downloaded as supplementary information from Lambrechts et al41. 

 

Immunohistochemistry data. 

 

Ki67 staining. As previously described for the TRACERx cohort23, staining was performed 

for Ki67. 

 

Statistical analysis. 

 

https://cran.r-project.org/package=rmeta


 

 

All statistical tests were performed in R version 3.3.1. No statistical methods were used to 

predetermine sample size. Tests involving correlations were done using ‘cor.test’ with 

either the Spearman’s method or Pearson’s method as specified. Tests involving 

comparisons of distributions were done using ‘wilcox.test’ or ‘t.test’ as stated. Hazard 

ratios and P values were calculated using the survival package (https://CRAN.R-

project.org/package=survival) version 2.41.3, through univariate or multivariate Cox 

regression analyses as stated. Kaplan-Meier plots were generated using the survminer 

package (https://CRAN.R-project.org/package=survminer) version 0.4.2. All statistical 

tests are two-sided, unless otherwise stated, and the number of data points included are 

plotted and/or annotated in the corresponding figure. 

  

Data availability. 

 

Sequence data used during the study has been deposited at the European Genome-

phenome Archive (EGA), which is hosted by The European Bioinformatics Institute (EBI) 

and the Centre for Genomic Regulation (CRG) under the accession code: 

EGAS00001003458. Further information about EGA can be found at https://ega-

archive.org. 

 

Code availability. 

 

Code is available at: https://github.com/dhruvabiswas/tracerx-oracle.  

  

https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survminer
https://github.com/dhruvabiswas/tracerx-oracle
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