807 research outputs found

    Spin-String Interaction in QCD Strings

    Full text link
    I consider the question of the interaction between a QCD string and the spin of a quark or an antiquark on whose worldline the string terminates. The problem is analysed from the point of view of a string representation for the expectation value of a Wilson loop for a spin-half particle. A string representation of the super Wilson loop is obtained starting from an effective string representation of a Wilson Loop. The action obtained in this manner is invariant under a worldline supersymmetry and has a boundary term which contains the spin-string interaction. For rectangular loops the spin-string interaction vanishes and there is no spin-spin term in the resulting heavy quark potential. On the other hand if an allowance is made for the finite intrinsic thickness of the flux-tube, by assuming that the spin-string interaction takes place not just at the boundary of the string world-sheet but extends to a distance of the order of the intrinsic thickness of the flux tube, then we do obtain a spin-spin interaction which falls as the fifth power of the distance. Such a term was previously suggested by Kogut and Parisi in the context of a flux-tube model of confinement.Comment: 19 pages, 1 figure; Published version with added discussion and references in section

    Excitations of torelon

    Full text link
    The excitations of gluonic flux tube in a periodic lattice are examined. Monte Carlo simulations from an anisotropic lattice are presented and the comparison with effective string models is discussed.Comment: Talk at Lattice 2003; 3 pages, 4 figure

    IT background of the medium-term storage of MartonvĂĄsĂĄr Cereal Genebank resources in phytotron cold rooms

    Get PDF
    Genebanks are storage facilities designed to maintain the plant genetic resources of crop varieties (and their wild relatives) and to ensure that they are made available and distributed for use by plant breeders, researchers and farmers. The Martonvásár Cereal Genebank (MV-CGB) collection evolved from the working collections of local breeders and consists predominantly of local and regional materials. Established in 1992 by the Agricultural Research Institute of the Hungarian Academy of Sciences (BedƑ, 2009), MVCGB with its over 10,000 accessions of the major species (Triticum, Aegilops, Agropyron, Elymus, Thinopyrum, Pseudoroegneria, Secale, Hordeum, Avena, Zea mays), became one of the approx. 80 cereal germplasm collections that exist globally. In Martonvásár breeding is underway on a number of cereal species, and large numbers of genotypes are tested each year in the field and under laboratory conditions. The increasing size of the research programmes assisted by a modern genebank background involve an enormous increase in the quantity of data that must be handled during research activities such as traditional breeding, pre-breeding and organic breeding. A computerized system is of primary importance to synchronize breeding and genebank activities, to monitor the quality and quantity of seed accessions in cold storage, to assist the registration of samples, and to facilitate characterization, regeneration and germplasm distribution

    String-like behaviour of 4d SU(3) Yang-Mills flux tubes

    Full text link
    We present here results on the fine structure of the static q\bar q potential in d=4 SU(3) Yang-Mills theory. The potential is obtained from Polyakov loop correlators having separations between 0.3 and 1.2 fermi. Measurements were carried out on lattices of spatial extents of about 4 and 5.4 fermi. The temporal extent was 5.4 fermi in both cases. The results are analyzed in terms of the force between a q\bar q pair as well as in terms of a scaled second derivative of the potential. The data is accurate enough to distinguish between different effective string models and it seems to favour the expression for ground state energy of a Nambu-Goto string.Comment: 9 pages in LaTeX with 2 figures and 2 tables in JHEP style. Replaced to match with shortened published versio

    How to Put a Heavier Higgs on the Lattice

    Full text link
    Lattice work, exploring the Higgs mass triviality bound, seems to indicate that a strongly interacting scalar sector in the minimal standard model cannot exist while low energy QCD phenomenology seems to indicate that it could. We attack this puzzle using the 1/N expansion and discover a simple criterion for selecting a lattice action that is more likely to produce a heavy Higgs particle. Our large NN calculation suggests that the Higgs mass bound might be around 850GeV850 GeV, which is about 30% higher than previously obtained

    Quark confinement and the bosonic string

    Get PDF
    Using a new type of simulation algorithm for the standard SU(3) lattice gauge theory that yields results with unprecedented precision, we confirm the presence of a Îł/r\gamma/r correction to the static quark potential at large distances rr, with a coefficient Îł\gamma as predicted by the bosonic string theory. In both three and four dimensions, the transition from perturbative to string behaviour is evident from the data and takes place at surprisingly small distances.Comment: TeX source, 21 pages, figures include

    New Physics and the Landau Pole

    Get PDF
    In scalar field theories the Landau pole is an ultraviolet singularity in the running coupling constant that indicates a mass scale at which the theory breaks down and new physics must intervene. However, new physics at the pole will in general affect the running of the low energy coupling constant, which will in turn affect the location of the pole and the related upper limit (``triviality'' bound) on the low energy coupling constant. If the new physics is strongly coupled to the scalar fields these effects can be significant even though they are power suppressed. We explore the possible range of such effects by deriving the one loop renormalization group equations for an effective scalar field theory with a dimension 6 operator representing the low energy effects of the new physics. As an independent check we also consider a renormalizable model of the high-scale physics constructed so that its low energy limit coincides with the effective theory.Comment: 26 pages, 5 figure

    A protosolar nebula origin for the ices agglomerated by Comet 67P/Churyumov-Gerasimenko

    Get PDF
    The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the protosolar nebula. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the protosolar nebula. On the basis of existing laboratory and modeling data, we find that the N2_2/CO and Ar/CO ratios measured in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA instrument aboard the European Space Agency's Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N2_2/CO and Ar/CO ratios in 67P/Churyumov-Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov-Gerasimenko is impoverished in Ar and N2_2, the volatile enrichments observed in Jupiter's atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.Comment: The Astrophysical Journal Letters, in pres

    Observation of Anomalous Internal Pair Creation in 8^8Be: A Possible Signature of a Light, Neutral Boson

    Full text link
    Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV state (Jπ=1+J^\pi=1^+, T=1T=1) →\rightarrow ground state (Jπ=0+J^\pi=0^+, T=0T=0) and the isoscalar magnetic dipole 18.15 MeV (Jπ=1+J^\pi=1^+, T=0T=0) state →\rightarrow ground state transitions in 8^{8}Be. Significant deviation from the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of >5σ> 5\sigma. This observation might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70±0.35\pm0.35 (stat)±0.5\pm 0.5 (sys) MeV/c2/c^2 and Jπ=1+J^\pi = 1^+ was created.Comment: 5 pages, 5 figure
    • 

    corecore