3,519 research outputs found
InAs-AlSb quantum wells in tilted magnetic fields
InAs-AlSb quantum wells are investigated by transport experiments in magnetic
fields tilted with respect to the sample normal. Using the coincidence method
we find for magnetic fields up to 28 T that the spin splitting can be as large
as 5 times the Landau splitting. We find a value of the g-factor of about 13.
For small even-integer filling factors the corresponding minima in the
Shubnikov-de Haas oscillations cannot be tuned into maxima for arbitrary tilt
angles. This indicates the anti-crossing of neighboring Landau and spin levels.
Furthermore we find for particular tilt angles a crossover from even-integer
dominated Shubnikov-de Haas minima to odd-integer minima as a function of
magnetic field
Estimating Material Properties of Interacting Objects Using Sum-GP-UCB
Robots need to estimate the material and dynamic properties of objects from
observations in order to simulate them accurately. We present a Bayesian
optimization approach to identifying the material property parameters of
objects based on a set of observations. Our focus is on estimating these
properties based on observations of scenes with different sets of interacting
objects. We propose an approach that exploits the structure of the reward
function by modeling the reward for each observation separately and using only
the parameters of the objects in that scene as inputs. The resulting
lower-dimensional models generalize better over the parameter space, which in
turn results in a faster optimization. To speed up the optimization process
further, and reduce the number of simulation runs needed to find good parameter
values, we also propose partial evaluations of the reward function, wherein the
selected parameters are only evaluated on a subset of real world evaluations.
The approach was successfully evaluated on a set of scenes with a wide range of
object interactions, and we showed that our method can effectively perform
incremental learning without resetting the rewards of the gathered
observations
Universality of the Gunn effect: self-sustained oscillations mediated by solitary waves
The Gunn effect consists of time-periodic oscillations of the current flowing
through an external purely resistive circuit mediated by solitary wave dynamics
of the electric field on an attached appropriate semiconductor. By means of a
new asymptotic analysis, it is argued that Gunn-like behavior occurs in
specific classes of model equations. As an illustration, an example related to
the constrained Cahn-Allen equation is analyzed.Comment: 4 pages,3 Post-Script figure
Stationary states and phase diagram for a model of the Gunn effect under realistic boundary conditions
A general formulation of boundary conditions for semiconductor-metal contacts
follows from a phenomenological procedure sketched here. The resulting boundary
conditions, which incorporate only physically well-defined parameters, are used
to study the classical unipolar drift-diffusion model for the Gunn effect. The
analysis of its stationary solutions reveals the presence of bistability and
hysteresis for a certain range of contact parameters. Several types of Gunn
effect are predicted to occur in the model, when no stable stationary solution
exists, depending on the value of the parameters of the injecting contact
appearing in the boundary condition. In this way, the critical role played by
contacts in the Gunn effect is clearly stablished.Comment: 10 pages, 6 Post-Script figure
The use of mobile phones for skin tumor screening
A lot of importance is attributed to mobile telemedicine these days, a topic that encompasses a wide and ever growing range of applications. Small, handheld devices such as camera mobile phones have come into every day use providing technically sophisticated tasks on a user-friendly level and can therefore be easily used in various fields of telemedicine. Dermatology is a perfect candidate for the use of telemedicine tools in general, as well as mobile devices in particular. The unique aspect of mobile teledermatology is that this system represents a filtering, or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. In order to investigate the feasibility of teleconsultation using a new generation of cellular phones, a clinical study to evaluate the accuracy of online diagnosis of skin tumours was conducted. Teledermoscopy represents a recent development of teledermatology that might add up additional information in the diagnosis of pigmented skin lesions. Teledermatology, mobile as well as stationary, can advance the reliability of diagnosis by expert consultations without expensive and time-consuming relocations. Consequently, the quality of patient's care can be raised and the costs of the health care system can be reduced
Synthetic induction of immunogenic cell death by genetic stimulation of endoplasmic reticulum stress.
Cis-diamminedichloridoplatinum(II) (CDDP), commonly referred to as cisplatin, is a chemotherapeutic drug used for the treatment of a wide range of solid cancers. CDDP is a relatively poor inducer of immunogenic cell death (ICD), a cell death modality that converts dying cells into a tumor vaccine, stimulating an immune response against residual cancer cells that permits long-lasting immunity and a corresponding reduction in tumor growth. The incapacity of CDDP to trigger ICD is at least partially due to its failure to stimulate the premortem endoplasmic reticulum (ER)-stress response required for the externalization of the "eat-me" signal calreticulin (CRT) on the surface of dying cancer cells. Here, we developed a murine cancer cell line genetically modified to express the ER resident protein reticulon-1c (Rtn-1c) by virtue of tetracycline induction and showed that enforced Rtn-1c expression combined with CDDP treatment promoted CRT externalization to the surface of cancer cells. In contrast to single agent treatments, the tetracycline-mediated Rtn-1c induction combined with CDDP chemotherapy stimulated ICD as measured by the capacity of dying tumor cells, inoculated into syngenic immunocompetent mice, to mount an immune response to tumor re-challenge 1 week later. More importantly, established tumors, forced to constitutively express Rtn-1c in vivo by continuous treatment with tetracycline, became responsive to CDDP and exhibited a corresponding reduction in the rate of tumor growth. The combined therapeutic effects of Rtn-1c induction with CDDP treatment was only detected in the context of an intact immune system and not in nu/nu mice lacking thymus-dependent T lymphocytes. Altogether, these results indicate that the artificial or "synthetic" induction of immunogenic cell death by genetic manipulation of the ER-stress response can improve the efficacy of chemotherapy with CDDP by stimulating anticancer immunity
Mitochondrial control of cell death induced by hyperosmotic stress
HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-XL sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control
Andreev magnetotransport in low-dimensional proximity structures: Spin-dependent conductance enhancement
We study the excess conductance due to the superconducting proximity effect
in a ballistic two-dimensional electron system subject to an in-plane magnetic
field. We show that under certain conditions the interplay of the Zeeman spin
splitting and the effect of a screening supercurrent gives rise to a
spin-selective Andreev enhancement of the conductance and anomalies in its
voltage, temperature and magnetic field characteristics. The magnetic-field
influence on Andreev reflection is discussed in the context of using
superconducting hybrid junctions for spin detection.Comment: 4 pages, 5 figure
- …