26 research outputs found

    Holistic approach to dissolution kinetics : linking direction-specific microscopic fluxes, local mass transport effects and global macroscopic rates from gypsum etch pit analysis

    Get PDF
    Dissolution processes at single crystal surfaces often involve the initial formation and expansion of localized, characteristic (faceted) etch-pits at defects, in an otherwise comparatively unreactive surface. Using natural gypsum single crystal as an example, a simple but powerful morphological analysis of these characteristic etch pit features is proposed that allows important questions concerning dissolution kinetics to be addressed. Significantly, quantitative mass transport associated with reactive microscale interfaces in quiescent solution (well known in the field of electrochemistry at ultramicroelectrodes) allows the relative importance of diffusion compared to surface kinetics to be assessed. Furthermore, because such mass transport rates are high, much faster surface kinetics can be determined than with existing dissolution methods. For the case of gypsum, surface processes are found to dominate the kinetics at early stages of the dissolution process (small etch pits) on the cleaved (010) surface. However, the contribution from mass transport becomes more important with time due to the increased area of the reactive zones and associated decrease in mass transport rate. Significantly, spatial heterogeneities in both surface kinetics and mass transport effects are identified, and the morphology of the characteristic etch features reveal direction-dependent dissolution kinetics that can be quantified. Effective dissolution velocities normal to the main basal (010) face are determined, along with velocities for the movement of [001] and [100] oriented steps. Inert electrolyte enhances dissolution velocities in all directions (salting in), but a striking new observation is that the effect is direction-dependent. Studies of common ion effects reveal that Ca2+ has a much greater impact in reducing dissolution rates compared to SO42−. With this approach, the new microscopic observations can be further analysed to obtain macroscopic dissolution rates, which are found to be wholly consistent with previous bulk measurements. The studies are thus important in bridging the gap between microscopic phenomena and macroscopic measurements

    The Effect of the CO32- to Ca2+ Ion activity ratio on calcite precipitation kinetics and Sr2+ partitioning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A proposed strategy for immobilizing trace metals in the subsurface is to stimulate calcium carbonate precipitation and incorporate contaminants by co-precipitation. Such an approach will require injecting chemical amendments into the subsurface to generate supersaturated conditions that promote mineral precipitation. However, the formation of reactant mixing zones will create gradients in both the saturation state and ion activity ratios (i.e., <inline-formula><m:math name="1467-4866-13-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:math></inline-formula>). To better understand the effect of ion activity ratios on CaCO<sub>3 </sub>precipitation kinetics and Sr<sup>2+ </sup>co-precipitation, experiments were conducted under constant composition conditions where the supersaturation state (Ω) for calcite was held constant at 9.4, but the ion activity ratio <inline-formula><m:math name="1467-4866-13-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mo class="MathClass-open">(</m:mo><m:mrow><m:mi>r</m:mi><m:mo class="MathClass-rel">=</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:mrow><m:mo class="MathClass-close">)</m:mo></m:mrow></m:math></inline-formula> was varied between 0.0032 and 4.15.</p> <p>Results</p> <p>Calcite was the only phase observed, by XRD, at the end of the experiments. Precipitation rates increased from 41.3 ± 3.4 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r = </it>0.0315 to a maximum rate of 74.5 ± 4.8 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r = </it>0.306 followed by a decrease to 46.3 ± 9.6 μmol m<sup>-2 </sup>min<sup>-1 </sup>at <it>r </it>= 1.822. The trend was simulated using a simple mass transfer model for solute uptake at the calcite surface. However, precipitation rates at fixed saturation states also evolved with time. Precipitation rates accelerated for low <it>r </it>values but slowed for high <it>r </it>values. These trends may be related to changes in effective reactive surface area. The <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1467-4866-13-1-i1"><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:msub><m:mrow><m:mi>O</m:mi></m:mrow><m:mrow><m:mn>3</m:mn></m:mrow></m:msub></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">-</m:mo></m:mrow></m:msup></m:mrow></m:msub><m:mo class="MathClass-bin">/</m:mo><m:msub><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mi>C</m:mi><m:msup><m:mrow><m:mi>a</m:mi></m:mrow><m:mrow><m:mn>2</m:mn><m:mo class="MathClass-bin">+</m:mo></m:mrow></m:msup></m:mrow></m:msub></m:math></inline-formula> ratios did not affect the distribution coefficient for Sr in calcite (D<sup>P</sup><sub>Sr</sub><sup>2+</sup>), apart from the indirect effect associated with the established positive correlation between D<sup>P</sup><sub>Sr</sub><sup>2+ </sup>and calcite precipitation rate.</p> <p>Conclusion</p> <p>At a constant supersaturation state (Ω = 9.4), varying the ion activity ratio affects the calcite precipitation rate. This behavior is not predicted by affinity-based rate models. Furthermore, at the highest ion ratio tested, no precipitation was observed, while at the lowest ion ratio precipitation occurred immediately and valid rate measurements could not be made. The maximum measured precipitation rate was 2-fold greater than the minima, and occurred at a carbonate to calcium ion activity ratio of 0.306. These findings have implications for predicting the progress and cost of remediation operations involving enhanced calcite precipitation where mineral precipitation rates, and the spatial/temporal distribution of those rates, can have significant impacts on the mobility of contaminants.</p

    The effect of specific background electrolytes on water structure and solute hydration: Consequences for crystal dissolution and growth

    No full text
    Barium sulfate is used as a model system to illustrate how solution composition can affect processes of crystal dissolution and growth. Rates and modes of reactions as well as morphological features can be modified by the introduction of simple ionic salts (KCl, NaCl, LiCl, CsCl, NaF, NaNO3), due to the effects of these electrolytes on water structure dynamics and solute hydration. Based on the results of AFM in situ experiments performed at supersaturation (O) = 10.6 ± 0.1 and ionic strength (IS) in the range of 0.005-0.1 M we show that growth and dissolution behavior of barite changes under conditions of constant thermodynamic driving force (O) and constant IS in a systematic way depending on the specific background electrolyte used to adjust IS. The results are interpreted in terms of the relationships between solution composition, ion properties and the consequent growth and dissolution behavior. Island spreading rate is affected by salt-specific effects on the activation energy barrier of expelling water molecules from solvation shells of barite building units. Dissolution kinetics depends on the balance between the energy expended on breaking solvent structure and the energy gain on hydrating Ba2+ and SO42 - ions, which are specific for different electrolyte solutions. Nucleation rates are determined by the frequency of water exchange around a barium cation which also depends on solution composition. Relating the structure of the solution to its composition can help to understand phenomena such as growth and dissolution in the presence of organic additives or impurity incorporation. © 2008 Elsevier Ltd. All rights reserved

    The control of solution composition on ligand-promoted dissolution: DTPA-Barite interactions

    No full text
    The mechanism and kinetics of barite (BaSO4) dissolution in the presence of diethylenetriaminepentaacetic acid (DTPA) has been investigated as a function of solution composition. The dependence of the reaction rate on the background electrolyte present in solution (NaCl or KCl) and on the concentration of the chelating agent (DTPA) is explained by considering chemical speciation and conformational changes of DTPA in the aqueous phase. A mechanism for the promotion of the dissolution reaction by dissociated ionic species is proposed for an organic polyelectrolyte with a strong affinity to Ba 2+ ions (DTPA) and for simple inorganic electrolytes. The mobilization of ions from the crystal structure is suggested to be induced mainly by water molecules and not by specific additive-surface interactions. Recognition of the correlation between solution composition, ion-water interactions (hydration phenomena), and the dissolution process enables an explanation of the faster dissolution kinetics of barite in the aqueous solution of a simple inorganic salt (NaCl) compared to in the solution of a strong chelating agent (DTPA). Our findings imply that because the mechanisms of complexation in solution and mobilization of ions from the solid surface are different, the sequestering capacity of the ligand toward dissolved ions cannot be used to predict the dissolution rate. © 2009 American Chemical Society

    The mechanism and kinetics of DTPA-promoted dissolution of barite

    No full text
    The dissolution rate of natural barite, BaSO4, was measured in solutions of DTPA (diethylene triamine penta-acetic acid) to investigate the mechanism of ligand-promoted dissolution using a strong chelating agent. Experiments were carried out over a range of DTPA concentrations 0.5-0.0001 M solutions, at room temperature (22 °C), as well as a range of temperatures, 22-80 °C at 1 atm. The dissolution rate is inversely related to the DTPA concentration in solution. A more dilute DTPA solution is shown to be more efficient as a solvent in terms of the approach to the equilibrium saturation value for the dissolution of Ba2+. An analysis of the temperature dependence of the dissolution rate at high pH by the determination of activation energies indicates that the reaction is probably controlled by the pre-exponential term in the rate constant. This indicates that reaction frequency mostly controls differences in reactivity and suggests an explanation for the results in terms of stearic hindrance due to adsorbed DTPA molecules at the barite surface. The effect of DTPA on the solvation of the Ba2+ ion may also influence the dissolution rate. © 2008 Elsevier Ltd. All rights reserved

    The role of background electrolytes on the kinetics and mechanism of calcite dissolution

    No full text
    The influence of background electrolytes on the mechanism and kinetics of calcite dissolution was investigated using in situ Atomic Force Microscopy (AFM). Experiments were carried out far from equilibrium by passing alkali halide salt (NaCl, NaF, NaI, KCl and LiCl) solutions over calcite cleavage surfaces. This AFM study shows that all the electrolytes tested enhance the calcite dissolution rate. The effect and its magnitude is determined by the nature and concentration of the electrolyte solution. Changes in morphology of dissolution etch pits and dissolution rates are interpreted in terms of modification in water structure dynamics (i.e. in the activation energy barrier of breaking water-water interactions), as well as solute and surface hydration induced by the presence of different ions in solution. At low ionic strength, stabilization of water hydration shells of calcium ions by non-paired electrolytes leads to a reduction in the calcite dissolution rate compared to pure water. At high ionic strength, salts with a common anion yield similar dissolution rates, increasing in the order Cl- &lt; I- &lt; F- for salts with a common cation due to an increasing mobility of water around the calcium ion. Changes in etch pit morphology observed in the presence of F- and Li+ are explained by stabilization of etch pit edges bonded by like-charged ions and ion incorporation, respectively. As previously reported and confirmed here for the case of F-, highly hydrated ions increased the etch pit nucleation density on calcite surfaces compared to pure water. This may be related to a reduction in the energy barrier for etch pit nucleation due to disruption of the surface hydration layer. © 2009 Elsevier Ltd. All rights reserved

    Boron incorporation into calcite during growth: Implications for the use of boron in carbonates as a pH proxy

    No full text
    Current interest in boron incorporation into carbonates arises from the observation that the isotopic composition of carbonates depends on the pH of the fluid from which they precipitated. This finding opened the possibility of using boron isotopic composition of natural carbonates as a paleo-pH proxy. In this study, coprecipitation of boron by calcite was investigated using Atomic Force Microscopy (AFM), as a function of pH, supersaturation and boron concentration. In situ AFM observations reported here provide experimental evidence of boron incorporation into calcite, which takes place to a greater extent at high pH (9.5) and under close to equilibrium conditions. Moreover, we report nanoscale observations that give indirect evidence of the incorporation of boron in non-lattice sites. Step-specific interactions of tetrahedrally-coordinated boron with calcite obtuse steps during growth are revealed as a reduction in the obtuse-step spreading rate as well as rounding and roughening of such steps. Our results suggest that, together with changes in pH, variations in the calcification rate or the calcite crystallographic form in which boron is incorporated are important factors to consider when using boron in carbonates as a pH proxy, as these factors could also influence the amount of boron incorporated during growth and possibly the boron isotopic signature

    Investigation of spin wave dynamics in Au/CoFeB/Au multilayers with perpendicular magnetic anisotropy

    No full text
    Abstract We have carried out an experimental investigation of the spin-wave dynamics in the Au/CoFeB/Au multilayer consisting of a ferromagnetic film with thicknesses of 0.8, 0.9 and 1.0 nm. We employed the Brillouin light scattering spectroscopy to measure the frequency of the spin waves in dependence on the wave vector. Additionally, we characterized the samples by ferromagnetic resonance measurements. We found that the considered samples exhibit perpendicular magnetic anisotropy with low damping, indicating small pumping effects. Furthermore, we found a nonreciprocal dispersion relation pointing at a non-negligible Dzyaloshinskii–Moriya interaction. These results make the Au/CoFeB/Au multilayer a compelling subject for further analysis and as a potential material for future applications within magnonics

    An atomic force microscopy study of the growth of a calcite surface as a function of calcium/total carbonate concentration ratio in solution at constant supersaturation

    No full text
    Calcite growth experiments using atomic force microscopy (AFM) were conducted at two constant values of supersaturation (Qi = 5.248 and £22 = 6.457) while varying the Ca2+to CO32-concentration ratio. The calcite growth rate and the morphology of growth depend on the solution stoichiometry. At a constant degree of supersaturation, the growth rate was highest when the cation/total carbonate anion ratio, r*, was equal to 1 but decreased nonsymmetrically for higher or lower values of r*. The observed dependence of growth, rates on solution stoichiometry can be explained by nonequivalent attachment frequencies of cation and anion at ratios that differ from 1. At the same time, the morphology of the closing etch pits and of the forming nuclei was different when the rate changed, suggesting a change in the crystal growth mechanism. © 2009 American Chemical Society
    corecore