30 research outputs found

    Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with low survival rates and limited therapeutic options. Thus elucidation of signaling pathways involved in PDAC pathogenesis is essential for identifying novel potential therapeutic gene targets. Here, we used a systems approach to elucidate those pathways by integrating gene and microRNA profiling analyses together with CRISPR/Cas9 technology to identify novel transcription factors involved in PDAC pathogenesis. FOXA2 transcription factor was found to be significantly downregulated in PDAC relative to control pancreatic tissues. Functional experiments revealed that FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation. In situ hybridization analysis revealed miR-199a to be significantly upregulated in pancreatic cancer. Bioinformatics and luciferase analyses showed that miR-199a negatively but directly regulates FOXA2 expression through binding in its 3′-untranslated region (UTR). Evaluation of the functional importance of miR-199a on pancreatic cancer revealed that miR-199a acts as an inhibitor of FOXA2 expression, inducing an increase in pancreatic cancer cell proliferation, migration, and invasion. Additionally, gene ontology and network analyses in PANC-1 cells treated with a small interfering RNA (siRNA) against FOXA2 revealed an enrichment for cell invasion mechanisms through PLAUR and ERK activation. FOXA2 deletion (FOXA2Δ) by using two CRISPR/Cas9 vectors in PANC-1 cells induced tumor growth in vivo resulting in upregulation of PLAUR and ERK pathways in FOXA2Δ xenograft tumors. We have identified FOXA2 as a novel tumor suppressor in pancreatic cancer and it is regulated directly by miR-199a, thereby enhancing our understanding of how microRNAs interplay with the transcription factors to affect pancreatic oncogenesis

    Cyclin-dependent kinase 5 mediates pleiotrophin-induced endothelial cell migration

    Get PDF
    Pleiotrophin (PTN) stimulates endothelial cell migration through binding to receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and ανβ3 integrin. Screening for proteins that interact with RPTPβ/ζ and potentially regulate PTN signaling, through mass spectrometry analysis, identified cyclin-dependent kinase 5 (CDK5) activator p35 among the proteins displaying high sequence coverage. Interaction of p35 with the serine/threonine kinase CDK5 leads to CDK5 activation, known to be implicated in cell migration. Protein immunoprecipitation and proximity ligation assays verified p35-RPTPβ/ζ interaction and revealed the molecular association of CDK5 and RPTPβ/ζ. In endothelial cells, PTN activates CDK5 in an RPTPβ/ζ- and phosphoinositide 3-kinase (PI3K)-dependent manner. On the other hand, c-Src, ανβ3 and ERK1/2 do not mediate the PTN-induced CDK5 activation. Pharmacological and genetic inhibition of CDK5 abolished PTN-induced endothelial cell migration, suggesting that CDK5 mediates PTN stimulatory effect. A new pyrrolo[2,3-α]carbazole derivative previously identified as a CDK1 inhibitor, was found to suppress CDK5 activity and eliminate PTN stimulatory effect on cell migration, warranting its further evaluation as a new CDK5 inhibitor. Collectively, our data reveal that CDK5 is activated by PTN, in an RPTPβ/ζ-dependent manner, regulates PTN-induced cell migration and is an attractive target for the inhibition of PTN pro-angiogenic properties

    Lysine methyltransferase 2D regulates pancreatic carcinogenesis through metabolic reprogramming

    Get PDF
    Objective: Despite advances in the identification of epigenetic alterations in pancreatic cancer, their biological roles in the pathobiology of this dismal neoplasm remain elusive. Here, we aimed to characterise the functional significance of histone lysine methyltransferases (KMTs) and demethylases (KDMs) in pancreatic tumourigenesis. Design: DNA methylation sequencing and gene expression microarrays were employed to investigate CpG methylation and expression patterns of KMTs and KDMs in pancreatic cancer tissues versus normal tissues. Gene expression was assessed in five cohorts of patients by reverse transcription quantitative-PCR. Molecular analysis and functional assays were conducted in genetically modified cell lines. Cellular metabolic rates were measured using an XF24-3 Analyzer, while quantitative evaluation of lipids was performed by liquid chromatography-mass spectrometry (LC-MS) analysis. Subcutaneous xenograft mouse models were used to evaluate pancreatic tumour growth in vivo. Results: We define a new antitumorous function of the histone lysine (K)-specific methyltransferase 2D (KMT2D) in pancreatic cancer. KMT2D is transcriptionally repressed in human pancreatic tumours through DNA methylation. Clinically, lower levels of this methyltransferase associate with poor prognosis and significant weight alterations. RNAi-based genetic inactivation of KMT2D promotes tumour growth and results in loss of H3K4me3 mark. In addition, KMT2D inhibition increases aerobic glycolysis and alters the lipidomic profiles of pancreatic cancer cells. Further analysis of this phenomenon identified the glucose transporter SLC2A3 as a mediator of KMT2D-induced changes in cellular, metabolic and proliferative rates. Conclusion: Together our findings define a new tumour suppressor function of KMT2D through the regulation of glucose/fatty acid metabolism in pancreatic cancer

    Effect of transcutaneous electrical neuromuscular stimulation on myopathy in intensive care patients

    No full text
    Background Critical illness polyneuropathy or myopathy is a severe disorder that may adversely affect patients in the intensive care unit, resulting in reduced mobilization, decline in muscle mass, and prolonged recovery periods. Objective To examine whether the application of transcutaneous electrical neuromuscular stimulation (TENMS) reduces the incidence or severity of myopathy related to critical illness in intensive care unit patients. Methods A total of 80 patients aged 18 years or older with an intensive care unit stay of 96 hours or more and receipt of mechanical ventilation for 96 hours or more were initially enrolled in a prospective, open-label randomized controlled trial in a university hospital. Patients received either conventional physical therapy alone (control group) or conventional physical therapy plus TENMS (TENMS group) for 10 days. Myopathy was assessed histologically (by needle biopsy of the quadriceps muscles) on the 4th and 14th days of the intensive care unit stay. Results Of the 68 patients who completed the study, 27 (40%) had myopathy on the 14th day: 11 patients in the TENMS group (9 mild, 1 moderate, and 1 severe) and 16 patients in the control group (13 mild, 2 moderate, and 1 severe). Patients who progressed from mild to moderate or severe myopathy between the 4th and 14th days had significantly lower body mass index (P = .001) and longer time periods with inadequate nutrition (P = .049) compared with the other patients. Mean (SD) Rankin scale scores at 6 months were 3.2 (1.8) and 3.8 (2.1) in the TENMS and control groups, respectively (P = .09). Conclusion TENMS had no significant impact on myopathy in the critically ill patients in this study. © 2018 American Association of Critical-Care Nurses

    Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy

    No full text
    The hallmark of spinal muscular atrophy (SMA), an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons
    corecore