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ABSTRACT 

Objective Despite advances in the identification of epigenetic alterations in pancreatic cancer, 

their biological roles in the pathobiology of this dismal neoplasm remain elusive. Here, we 

aimed to characterize the functional significance of histone lysine methyltransferases (KMTs) 

and demethylases (KDMs) in pancreatic tumourigenesis.   

Design DNA methylation sequencing and gene expression microarrays were employed to 

investigate CpG methylation and expression patterns of KMTs and KDMs in pancreatic cancer 

tissues versus normal tissues. Gene expression was assessed in five cohorts of patients by 

reverse transcription quantitative-PCR. Molecular analysis and functional assays were 

conducted in genetically modified cell lines. Cellular metabolic rates were measured using an 

XF24-3 Analyzer, while quantitative evaluation of lipids was performed by liquid 

chromatography-mass spectrometry (LC-MS) analysis. Subcutaneous xenograft mouse 

models were used to evaluate pancreatic tumour growth in vivo. 

Results We define a new anticancer function of histone lysine (K)-specific methyltransferase 

2D (KMT2D) in pancreatic cancer. KMT2D is transcriptionally repressed in human pancreatic 

tumors through DNA methylation. Clinically, lower levels of this methyltransferase associate 

with poor prognosis and significant weight alterations. RNAi-based genetic inactivation of 

KMT2D promotes tumor growth and results in loss of H3K4me3 mark. In addition, KMT2D 

inhibition increases aerobic glycolysis and alters the lipidomic profiles of pancreatic cancer 

cells. Further analysis of this phenomenon identified the glucose transporter SLC2A3 as a 

mediator of KMT2Dinduced changes in cellular, metabolic and proliferative rates. 

Conclusion Together our findings define a new tumor suppressor function of KMT2D through 

the regulation of glucose/fatty acid metabolism in pancreatic cancer. 

 

WHAT IS ALREADY KNOWN ON THIS SUBJECT? 

• Pharmacological targeting of epigenetic modifications contributes to uncovering 

therapeutic opportunities in pancreatic cancer. 

• Several groups describe the deregulation and functional diversity of some histone 

methylation pathways in pancreatic adenocarcinomas. 

• To date, the biological and translational significance of the aberrant function of the 

epigenetic regulators remains poorly understood, in particular for proteins controlling 

histone methylation. 
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WHAT ARE THE NEW FINDINGS? 

• Transcriptional repression of histone lysine (K)-specific methyltransferase 2D 

(KMT2D) is double site, CG methylation-dependent. 

• Pancreatic cancer growth is promoted by KMT2D downregulation. 

• KMT2D suppression mediates loss of H3K4me3 signals in metabolic pathways and 

accounts for an induction of aerobic glycolysis and lipid levels. 

• SLC2A3 (also known as GLUT3) is a mediator of KMT2D-induced effects in cellular 

metabolic and proliferative rates. 

• Patients with pancreatic cancer harbouring low KMT2D levels have worse prognosis 

and significant weight/body mass index (BMI) alterations. 

 

HOW MIGHT IT IMPACT ON CLINICAL PRACTICE IN THE FORESEEABLE FUTURE? 

• Characterization of KMT2D-associated metabolic signatures provides a new molecular 

rationale to identify and develop a new generation of therapeutic agents. 

• Future studies exploring the causal molecular link between KMT2D expression and 

clinical outcomes may offer prognostic information and insights into pancreatic 

tumourigenesis and progression. 

 

INTRODUCTION 

Emerging studies demonstrate that epigenetic rather than genetic changes modulate the 

phenotype of different cancer types, specifically the ones controlling chromatin modifications 

such as histone methylation. In fact, there is evidence showing that changes in histone lysine 

methyltransferases (KMTs) and demethylases (KDMs), including KDM2B1 and EZH2,2 could 

affect pancreatic tumour growth. This is particularly important as it has been recently indicated 

that KMTs and KDMs could alter gene expression in a selective manner, while other chromatin 

modifiers, such as histone deacetylases and DNA methyltransferases, globally regulate gene 

expression.3 Thus, understanding the function of histone methylation pathways could lead to 

a high degree of specificity in targeting specific epigenetic factors that control pancreatic 

malignant transformation. 

In the present study, we provide evidence for a novel role of histone lysine (K)-specific 

methyltransferase 2D (KMT2D) in pancreatic carcinogenesis. Our chromatin 

immunoprecipitation- sequencing (ChIP-seq) and genome-wide gene expression analysis, as 

well as tumour growth studies, strongly support its role as a pancreatic tumor suppressor. 

Specifically, KMT2D inhibition results in alterations of pancreatic cancer cells’ bioenergetic 

and lipidomic profiles, by increasing aerobic glycolysis and lipid levels. Clinical outcomes 
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across the range of body weight and body mass index (BMI) were found to significantly 

correlate with KMT2D expression levels. Taken together, we have defined a previously 

uncharacterized function of KMT2D as growth-limiting factor in pancreatic cancer, and by 

mechanistic studies we demonstrate that the metabolic reprogramming underlies this 

anticancer function of KMT2D. 

 

MATERIALS AND METHODS 

Cell treatments. 

Cells were transfected with small interfering RNAs (siRNAs) for KMT2D, #1 (s15605) and #2 

(s15604), SLC2A3 (s12933), LDLR (s224008), SLC2A1 (s12926), mTOR (s604), RICTOR 

(s226000) and control (4390846) using Lipofectamine RNAiMax Transfection Reagent 

(13778150, Life Technologies). Lentiviruses were produced in HEK293T cells (ATCC) 

transfected with the packaging and expression constructs using Fugene 6 (E2691, Promega). 

Cells were infected with the viruses using DEAE-Dextran and selected with puromycin. 

Mouse experiments. 

Cells were transduced with short hairpin RNAs (shRNAs) for KMT2D or scramble (1864, 

Addgene) lentiviral expressing constructs. Sequences containing the shRNAs for KMT2D 

were annealed and cloned into the pLKO.1 puro (8453, Addgene) vector according to the 

Janes Lab protocol (http:// bme. virginia. edu/ janes/ protocols/ pdf/ Janes_ shRNAcloning. 

pdf): 

#1–19: (sense: CCGG GAGT CGAA CTTT ACTG TCTC TGCA GAGA CAGT AAAG TTCG 

ACTC TTTTTG; antisense: AATT CAAA AAGA GTCG AACT TTAC TGTC TCTG CAGA 

GACA GTAA AGTT CGACTC). 

#2–19: (sense: CCGG CCAC TCTC ATCA AATC CGAC TGCA GTCG GATT TGAT GAGA 

GTGG TTTTTG; antisense: AATT CAAA AACC ACTC TCAT CAAA TCCG ACTG CAGT 

CGGA TTTG ATGA GAGTGG). 

#1–21: (sense: CCGG GAGT CGAA CTTT ACTG TCTC CCTG CAGG GAGA CAGT AAAG 

TTCG ACTC TTTTTG; antisense: AATT CAAA AAGA GTCG AACT TTAC TGTC TCCC 

TGCA GGGA GACA GTAA AGTT CGACTC). 

#2–21: (sense: CCGG CCAC TCTC ATCA AATC CGAC ACTG CAGT GTCG GATT TGAT 

GAGA GTGG TTTTTG; antisense: AATT CAAA AACC ACTC TCAT CAAA TCCG ACAC 

TGCA GTGT CGGA TTTG ATGA GAGGG). 

3.5*106 or 4.5*106 MIA PaCa-2 or CAPAN-2 cells were injected subcutaneously at the right 

flank of NOD-SCID mice (five mice/group). Tumor volume was monitored every week for up 

to 42 and 84 days, respectively. Tumour volumes were calculated through the formula V (mm3) 
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= axb2/2, where a is the largest diameter and b is the perpendicular diameter. Bars represent 

mean ± SD. 

Data availability section. 

Array and sequencing data have been deposited in the Gene Expression Omnibus database 

(http://www. ncbi. nlm. nih. gov/geo/). Gene expression array, targeted bisulfite sequencing 

and ChIP-seq data are available under the following accession numbers: GSE85991, 

GSE85961 and GSE85886. Additional materials and methods are included as part of the 

online supplementary materials and methods section. 

 

RESULTS 

KMT2D exerts tumor suppressive activities in pancreatic cancer. 

To define the role of KMTs and KDMs in pancreatic carcinogenesis, we initially determined 

the levels of these enzymes in tumours (n=14) and adjacent controls (n=8) and found different 

members of the KDM family (KDM2A, KDM4C, KDM5B, KDM8), SETD family (SETDB2, 

SETD6), and the SUV420H1 and KMT2D to be differentially expressed (online supplementary 

table S1). As shown in Figure 1A and supplementary figure S1A, statistically significant and 

consistent deregulation of gene expression was observed only for KMT2D in three 

independent patient cohorts. We further investigated the differential KMT2D expression based 

on previously published gene expression array data listed in the Oncomine database. Notably, 

KMT2D mRNA expression displays significantly decreased levels based on two independent 

studies 4 5 (supplementary figure S1B, C). The expression of other H3K4 methyltransferase 

genes sharing similar structural domains with KMT2D was also measured. As shown in online 

supplementary figure S1D, E, no significant changes were observed in the mRNA levels of 

neither KMT2B nor KMT2C in the human pancreatic cancer samples used in the current study.  

Based on the above findings, we postulated the hypothesis that KMT2D might display tumor 

suppressive properties in pancreatic cancer. To address this hypothesis, we performed a 

series of in vitro and in vivo experiments where KMT2D was genetically inactivated, as 

evidenced in figure 1B. Transient downregulation of KMT2D by using two different siRNAs 

promoted cellular proliferative capacity (figure 1C, online supplementary figure S1F, G and 

supplementary tables S2–S3). To confirm the biological significance of KMT2D, pancreatic 

cancer cells stably suppressed of KMT2D expression were established (online supplementary 

figure S1H) and tested for their proliferative capacity (online supplementary figures S1I–L). 

The most efficient shRNA transfected cell population (#2–21) was subjected to clonal selection 

and used for further studies. Reverse transcription quantitative-PCR (RT-qPCR) and 

immunoblot (IB) analysis were used to verify the lower levels of KMT2D mRNA and protein in 

the clonal cell lines (figure 1D). Similar to transient knockdowns, stably decreased KMT2D 
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expression led to increased MIA PaCa-2 proliferation (figure 1E, online supplementary figure 

S1M, N and supplementary tables S4–S5) and cell anchorage-independent growth (figure 1F 

and online supplementary figure S10). 

To further validate our hypothesis, the effects of KMT2D inhibition of expression were 

investigated in nude mice bearing human pancreatic cancer xenografts. Significant induction 

of tumor growth rate and weight was observed (figure 1G, H and online supplementary figure 

S1P, Q), and lower KMT2D mRNA levels were confirmed by RT-qPCR and 

immunohistochemical (IHC) analysis (supplementary figure S1R, S) in the excised tumours. 

Consistent with these observations, histopathological analysis of tumours from different mice 

at the endpoint revealed high proliferation rates, as evidenced by Ki-67 immunostaining (figure 

1i). Taken together, these in vitro and in vivo results point towards a tumour suppressive role 

of KMT2D in pancreatic cancer. 

Site specific DNA methylation associates with KMT2D transcriptional repression. 

We then sought to determine the mechanism underlying KMT2D decreased expression in 

pancreatic cancer. To this end, we designed a complementary tissue-based and cell-based 

experimental approach for the evaluation of KMT2D transcriptional repression dependency on 

DNA methylation, as depicted in Figure 2A. We have investigated DNA methylation patterns 

of KMTs and KDMs in 20 pancreatic cancer tissues compared with 13 adjacent control tissues 

by using the Infinium Human Methylation 450 Bead ChIP Array. KMT2D, together with other 

four of these enzymes, was found to be significantly differentially methylated (at least over 

25%) in pancreatic tumours compared with normal tissues (figure 2B and supplementary Table 

S6). Specifically, methylation of two individual CpG motifs was observed at nucleotides (nt) 

−29 and +45, relatively to the KMT2D transcription start site (TSS). By integrating the data 

originating from CpG methylation genome-wide analysis with gene expression profiling in 

cancerous versus normal pancreas, KMT2D was simultaneously identified to be 

hypermethylated and downregulated. Whole exome sequencing in the pancreatic cancer cell 

lines used in the current study (online supplemetary table S7), as well as published data from 

other groups, show that KMT2D harbours deletions and mutations in pancreatic ductal 

adenocarcinoma (PDAC); however, the actual frequencies of such mutations in PDAC are still 

debatable. 6, 7 Given the above, we cannot rule out the possibility that genetic inactivation of 

KMT2D relies partly on both its mutational and/or CpG methylation status. 

Next, targeted bisulfite sequencing was performed for the specified region comprising nt −179 

to +122, in a panel of five pancreatic cancer cell lines treated with the DNA methyltransferase 

inhibitor 5-AZA-2'-deoxycytidine (5-AZA-CdR, Decitabine). Boxplots of DNA methylation 

levels indicate that drug-treated cells have an extensive hypomethylated pattern (figure 2C 

and online supplementary figure S2A). Further evidence on the impact of CpG methylation to 
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repress KMT2D transcriptional activity was obtained from analysis of KMT2D mRNA levels on 

different exposure times and drug concentrations (figure 2D and online supplementary figure 

S2B). The most robust time-dependent and dose-dependent changes occurred in MIA PaCa-

2 and AsPC-1 cell lines, an observation that was further validated by IB analysis (figure 2E). 

However, since this agent induces genome-wide demethylation, the observed increase in 

expression after treatment could be indirect. To eliminate this possibility, we designed a 

luciferase reporter assay for in vitro methylated KMT2D genomic region of interest (ROI) in 

wild-type or mutated state (figure 2F). Linearized constructs were in vitro methylated with high 

efficiency, as evidenced by resistance to digestion with HpaII methylation-specific 

endonuclease (figure 2G). As proof of concept, no significant differences were found among 

the promoter activity of unmethylated inserts (serving as positive controls), while in the totally 

unmodified methylated insert Renilla luciferase reporter (hRluc) gene activity was almost 

absent, thus confirming that CpG methylation controls transcriptional repression of KMT2D. 

Remarkably, both mutations applied in the ROI seem to derepress the hRluc activity of the in 

vitro methylated constructs by approximately 22-fold or 12-fold for Mut 1 and Mut 2, 

respectively (figure 2H, I). Taken together, our results identified that single-site CpGs 

methylation is critical for the suppression of KMT2D expression levels in pancreatic cancer. 

KMT2D suppression promotes a metabolic shift to aerobic glycolysis through 
regulation of SLC2A3. 

Next, we investigated the mechanisms downstream of KMT2D underlying its tumor 

suppressor functions. KMT2D belongs to the complex of proteins associated with Set1 

(COMPASS) family of H3K4 methyltransferases8; thus, we first examined the effects of 

KMT2D on global H3K4 methylation marks in pancreatic cancer cells. Using IB we showed 

that H3K4 mono-methylated and di-methylated were slightly downregulated in the siKMT2D 

treated cells, while the tri-methylated form of H3K4 (H3K4me3) was significantly reduced 

(figure 3A). Furthermore, we tested the effect of 5-AZA-CdR treatment, as a mean to 

overexpress KMT2D, on the H3K4me3 levels of pancreatic cancer cells. Consistent with the 

notion that H3K4 methylation is enriched on 5-Aza-dCdR treatment, potentially as a secondary 

event following the promoter demethylation and gene re-expression,9 10 we observed a 

remarkable enrichment of H3K4me3 methylation upon agent treatment. Interestingly, silencing 

of KMT2D in 5-Aza-dCdR-treated cells did not decrease H3K4me3 methylation levels as 

efficiently as in untreated cells, most possibly due to higher KMT2D levels (online 

supplementary figure S3A, B), while non-significant alterations in H3K4me1/2 levels were 

observed (online supplementary figure S3C). To complement these initial findings, ChIP-seq 

analysis for H3K4me3 and microarray gene expression profiling were performed in MIA PaCa-

2 cells. ChIP-seq analysis showed significant decrease in H3K4me3 signals in KMT2D-
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silenced versus non-targeting control cells (Figure 3B). The H3K4me3 peaks significantly 

overlap between the two different siRNAs used, as shown by the Venn diagram (figure 3C). 

H3K4me3 peaks were associated mostly with intergenic and intronic regions and were located 

around the TSS site (figure 3D, E). Marked loss of H3K4me3 peaks also occurs in loci 

essential for gene transcription as in the case of the general transcription factor IIA subunit 1 

(GTF2A1), a component of the transcription machinery of RNA polymerase II that plays an 

important role in transcriptional activation (online supplementary figure S4). Gene ontology 

(GO) analysis of the H3K4me3 peaks found to be diminished on KMT2D silencing identified 

association with transcription-related pathways, with the highest enrichment score being 

observed for ‘transcription from RNA polymerase II promoter’ and ‘metabolic processes’ 

(figure 3F). Serine/Threonine kinase 11 (STK11) represents an example of KMT2D-mediated 

regulation of metabolic gene through reduction of H3K4me3 occupancy that was further 

experimentally validated as a direct regulatory target of KMT2D (online supplementary figure 

S5). Gene expression studies demonstrated 1035 genes to be downregulated, while a smaller 

subset of genes was upregulated on KMT2D suppression (figure 3G). We mapped the 

differentially regulated genes to well-established (canonical) pathways by using the Ingenuity 

Pathway Analysis (IPA) software (Ingenuity Systems, http://www. ingenuity. com/). Energy-

converting biochemical processes, primarily related to glucose and fatty acid (FA) metabolism, 

were distinguished as KMT2D-mediated cellular functions (figure 3H). Collectively, both the 

ChIP-seq and microarray studies point to the association of KMT2D expression with 

metabolism-related pathways.  

To further explore the functional consequences of the metabolism-associated KMT2D 

target(s), we measured changes of nicotinamide adenine dinucleotide phosphate (NADPH), 

which represents a fundamental common mediator of various biological processes including 

energy metabolism.11 We found that cells harbouring low KMT2D levels accumulate higher 

NADPH levels in comparison with control cells (supplementary figure S6A). Given this 

observation, we reasoned to assay cultured cells in real time using an XF24-3 Analyzer to 

query changes in the bioenergetic status of KMT2D-suppressed versus control pancreatic 

cancer cells. Simultaneous assessment of both oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR) in basal state showed enhanced relative contribution of 

glycolysis on KMT2D suppression (figure 3I and online supplementary figure S6B, C). In 

particular, significant increase in ECAR values was observed, while OCR seems to remain 

unaffected, thus augmenting cellular preference for aerobic glycolysis. By quantifying the 

activity of the two major energy-yielding pathways in the cell, mitochondrial respiration and 

glycolysis, we provide evidence of a clear discrimination in the metabolic profiles driven by 
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loss of KMT2D expression. Furthermore, lactate production as well as glucose uptake were 

found to be significantly elevated on KMT2D silencing (online supplementary figure S6D–G). 

In light of the above results, we hypothesised that KMT2D could influence glucose metabolism 

by controlling key glycolytic genes. Expression of the SLC2A1 (glucose transporter-1 (GLUT-

1) that typically correlates with the rate of cellular glucose metabolism was found to be merely 

upregulated (+1.25-fold change) in KMT2D-silenced cells (figure 4A) and was not significantly 

affected in the tumors originating from xenografts bearing KMT2D stably suppressed 

pancreatic cancer cells (supplementary figure S7). Of note, solute carrier family 2 member 3 

(SLC2A3) (also known as GLUT3) was distinguished as the top differentially expressed 

glycolysis-related gene on KMT2D downregulation (figure 4A–C and online supplementary 

figure S8). To rule out secondary effects related to the genetic status of SLC2A3 in the two 

different pancreatic cancer cell lines, we demonstrate that mostly common single nucleotide 

changes of SLC2A3 gene are observed, all of them ensuing synonymous substitutions (online 

supplementary table S8). Mapped DNA sequence reads from the ChIP-seq experiments 

mentioned above do not support the role of SLC2A3 as a direct KMT2D transcriptional target. 

Hence, we assessed whether KMT2D transcriptionally regulates SLC2A3 through an indirect 

effect. 

Tuberous sclerosis 1 (TSC 1), which acts as upstream negative regulator of mechanistic target 

of rapamycin (mTOR) activation, 12 was found to be significantly downregulated based on the 

gene expression array employed in KMT2D-supressed cells (figure 3G). In addition, by 

pharmacological or genetic strategies, it has been demonstrated that rapamycin-sensitive 

mTOR complex 1, consisting of mTOR itself and the regulatory-associated protein of mTOR 

(Raptor), is involved in the regulation of SLC2A3 expression. Specifically, loss of the TSC1 

induced mTOR hyperactivation and SLC2A3 overexpression through the activation of the IκB 

kinase/nuclear factor kappa-light chain- enhancer of activated B cells (IKK/NF-κB) pathway.13 

In another report, stimulation of NF-κB activity has also been shown to directly upregulate 

SLC2A3 gene transcription in mouse and human cells.14 Indeed, IB analysis shows that 

reduction of KMT2D expression leads to increased phosphorylation and thus activation of 

mTOR (figure 4D) and increased phosphorylation of NF-κB p65 in Ser 536 (figure 4E). On the 

other hand, the expression of REL-associated protein (p65) involved in NF-κB heterodimer 

formation, nuclear translocation and activation is not influenced on KMT2D genetic 

manipulation (supplementary figure S9). Silencing of mTOR, but not Rictor (a specific 

component of mTORC2), as well as rapamycin treatment, reverse the SLC2A3 upregulation 

that is induced by low KMT2D levels (figure 4F and online supplementary figure S10). 

Furthermore, the use of inhibitors of NF-κB activation resulted in the partial reversal of SLC2A3 

mRNA levels induction caused by KMT2D silencing (figure 4G). These data suggest that 
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KMT2D suppression promotes SLC2A3 expression via activation of the mTOR/NF-kB axis. 

The immunostaining patterns of activated NF-κB p65 and SLC2A3 in tumors from xenografts 

bearing KMT2D stably suppressed or mock-transfected MIA PaCa-2 cells (online 

supplementary figure S11) validated our in vitro findings. Most importantly, treatment of 

pancreatic cancer cells with siRNA for SLC2A3 rescues the metabolic (figure 4H), proliferative 

(figure 4I and online supplementary tables S9–S10) and anchorage-independent growth 

phenotypes (figure 4J) that are associated with KMT2D suppression. Collectively, the 

functional features displayed by SLC2A3 reduction in KMT2D low-expressing cells highlight 

its role as a mediator of KMT2D-induced effects. 

Polyunsaturated fatty acids are increased in KMT2Dsuppressed cells and promote cell 
growth time-dependently. 

It is now considered that cancer cells support their increased growth rate by increasing either 

the uptake of exogenous lipids or their endogenous synthesis.15 Functional enrichment 

analysis (figure 5A), as well as bioinformatics prediction of the top-rated pathways and 

networks (figure 3G and supplementary table S11) of differentially expressed genes in 

KMT2D-silenced cells, suggest that KMT2D expression has an impact on lipid metabolic 

processes. Genes found in the functional cluster are illustrated in figure 5B, and among those, 

fatty acid synthase (FASN), which encodes a multienzyme protein catalysing FA synthesis, is 

one of the top differentially regulated genes on KMT2D downregulation (supplementary figure 

S12). Interestingly, we noticed that MIA PaCa-2 and CAPAN-2 bearing xenografts exhibit a 

clear trend of increased body weight, mainly at prolonged stages of tumour growth (figure 5C 

and online supplementary figure S13), even though these mice were possibly expected to be 

of poorer health given their increased tumor burden. However, the increase in the overall body 

weight of the mice most possibly relates to the increased weight of the tumours.  

As a next step, we used mass spectrometry-based technology to assess quantitative changes 

in FA composition and cholesterol content as a response to KMT2D silencing. Specifically, the 

total number of lipid species identified accounts for 28 FAs, all of which displayed increased 

levels relative to control cells (Table 1), with the most prominent differences being observed 

for the polyunsaturated fatty acids (PUFAs) docosadienoic, docosatrienoic and 

docosatetraenoic (Table 1 and figure 5D).  

Interestingly, addition of the aforementioned lipids in serum free conditions resulted in 

increased MIA PaCa-2 cell growth in a time-dependent and dose-dependent manner (figure 

5E) but did not affect pancreatic cancer cell’s invasive capacity (supplementary figure S14). 

Furthermore, elevated cholesterol uptake was detected in MIA PaCa-2 cultured cells 

transiently transfected with an siRNA against KMT2D, as assessed by fluorescence 

microscopy (figure 5F). Subsequently, we explored whether cells harbouring low or high 



11 
 

KMT2D levels differentially respond to perturbations in lipid homeostasis by (1) silencing the 

low-density lipoprotein receptor (LDLR), the main selective route of cholesterol-rich lipoprotein 

entrance into cancer cells; (2) blocking the ATP citrate lyase, a critical enzyme for de novo 

synthesis of a wide range of complex cellular lipids such as cholesterol and long-chain FAs 

using the SB 204990 inhibitor; and (c) blocking the Δ6 desaturase, the rate-limiting enzyme 

that initiates the metabolism of the n-6 and n-3 PUFAs, linoleic acid and α-linolenic acid, 

respectively, into their downstream long-chain FA conversion products using the selective SC 

26196 inhibitor. We found that reduction in MIA PaCa-2 cell proliferation rate caused by lipid 

synthesis/ uptake blockage is more pronounced in cells lacking KMT2D expression, with the 

maximum effect among the compounds used being observed in the case of the selective Δ6 

desaturase inhibitor SC 26196 (figure 5G). The latter result substantiates the functional 

importance of the top KMT2D-regulated lipids in pancreatic cancer, since the SC26196 

compound inhibits the rate-limiting step in arachidonic acid synthesis pathway, in which both 

docosadienoic and docosatetraenoic acids are implicated. Overall, these results revealed that 

the cellular lipid profiles depend on KMT2D expression. Furthermore, we are the first ones to 

show the potential of docosadienoic, docosatrienoic and docosatetraenoic acids to promote 

growth of pancreatic cancer cells, as evidenced by time-dependent studies. 

Synergistic role of glycolytic and lipidomic effectors in KMT2D-related phenotype. 

Lipogenic phenotype (characterised by increased FA synthesis, lipids’ uptake and 

metabolism) has been functionally and temporally linked to the glycolytic metabolism in 

primary and metastatic cancers as essential interaction regulating the malignant phenotype.16 

Thus, we explored whether KMT2D-mediated impact on cancer cell proliferation is 

interdependent on both glucose/lipid metabolism-related downstream effectors. Notably, 

combined treatment of cells with an siRNA for SLC2A3 and the SC26196 inhibitor completely 

reversed the effect of KMT2D depletion in MIA PaCa-2 cell proliferation (figure 5H), thus 

indicating the synergistic role of both SLC2A3 expression and maintenance of proper lipid 

composition as mediators of KMT2D-induced proliferative phenotype. 

Clinical relevance of the KMT2D expression in pancreatic cancer. 

To define the clinical relevance of our findings, KMT2D expression was examined by IHC and 

quantitative automated image analysis in matched adjacent control-cancerous tissues from 26 

patients with pancreatic cancer (cohort IV). KMT2D staining patterns showed that its nuclear 

localisation is almost absent in tumour samples, while highly expressed in normal tissues 

(Figure 6A and supplementary figure S15A). Further analysis of KMT2D expression in 

subgroups reflecting stage I or II of patients with pancreatic cancer (cohort IV), shows that the 

decrease in KMT2D levels may be significant in advanced stages of the disease 

(supplementary figure S15B). However, whether KMT2D levels relate to disease progression 
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needs to be further explored in extended numbers of human biopsies and genetically 

engineered mouse models of pancreatic cancer. Kaplan-Meier analysis performed in 158 

cases (cohort V) and in 22 cases (cohort III) revealed that patients with pancreatic cancer 

harbouring low KMT2D expression levels had worse prognosis in comparison with patients 

harbouring high KMT2D levels (figure 6B and online supplementary figure S16). Sample 

power calculations conducted for the larger cohort V suggest that an extended sample size 

(over 2800 cases) is needed to reach statistical significance supplementary table S12). It 

should be highlighted that the samples derived from cohort V reflect mostly (90%) stage II 

cases, thus rendering it very difficult to detect survival differences with statistical significance. 

On the other hand, 86% of the tumours derived from cohort III reflect patients with stage III 

pancreatic cancer. Subsequently, we conducted correlation analysis for the levels of KMT2D 

with its downstream effectors. Expectedly, the Pearson coefficients computed reflect a 

negative correlation between KMT2D and SLC2A3 mRNA levels (figure 6C, D), based on 

publicly available gene expression array data and our experimental RT-qPCR validation 

studies. Significantly, IHC analysis of activated NF-κB p65 and SLC2A3 in matched adjacent 

control-cancerous tissues shows increased immunostaining of both in the tumor-derived 

samples where KMT2D protein levels were found to be very low compared with normal 

samples. These results further validate our in vitro mechanistic findings that suggest KMT2D-

dependent NF-kB activation and thus SLC2A3 upregulation in pancreatic cancer. 

Correlation of KMT2D expression with various clinical parameters is illustrated in table 2 and 

supplementary table S13. No significant association was observed between KMT2D 

expression and age (p=0.4976), sex (p=0.2999) or race (p=0.3702). Interestingly, patients with 

high KMT2D levels display dramatic weight loss and higher BMI values with high statistical 

significance. Out of 106 cases with above median (>3.917) KMT2D expression, 84 (79.2%) 

cases lost an average of 9.366 kg (20.65 pounds). On the other hand, a significant correlation 

of KMT2D expression was further observed in 95 cases with increased body fat, as assessed 

by BMI measurements. In our attempt to address whether biopsies derived from patients 

harbouring low KMT2D levels exert quantitative changes in FA composition and cholesterol 

content relatively to control tissues, we performed lipidomics analysis in samples derived from 

cohort II. Remarkably, we found that among the top lipids being robustly upregulated with 

statistical significance in human biopsies are docosadienoic, docosatrienoic and 

docosatetraenoic acids, thus validating our in vitro results showing dramatic increase of these 

PUFAs on genetic inactivation of KMT2D in pancreatic cancer cells (Table 3). Overall, these 

findings support the relevance of KMT2D for human pancreatic carcinogenesis. Figure 7 

shows a diagram illustrating the upstream and downstream effectors of KMT2D expression 

and activity in pancreatic cancer. 
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DISCUSSION 

Novel role for the KMT2D-H3K4me axis in pancreatic cancer. 

Studies illustrating the role of KMT2D in histone H3K4 methylation at enhancers17 or in the 

maintenance of genome stability in genes18 help rationalize its widespread role in 

tumorigenesis. Based on a somatic knockout of KMT2D in human cells, microarray analysis 

revealed that a subset of genes that were associated with KMT2D-enriched loci displayed 

reduced expression in KMT2D-depleted cell lines that was accompanied by reduced 

H3K4me3.19 Recent research focus indicates the direct connections between metabolism and 

chromatin dynamics, underlying many aspects of metabolic dysfunction. Interestingly, 

KMT2D-activating signal cointegrator-2 complex has been shown to play redundant but 

essential roles in ligand-dependent H3K4me3 and expression of liver X receptor target 

genes20 and peroxisome proliferator-activated receptor gamma-dependent adipogenesis21 

and hepatic steatosis.22 

Here, by analysing pathways derived from H3K4me3 regions, we identified an association of 

KMT2D expression with metabolic processes. Our ChIP-seq data and mechanistic 

experiments support that STK11 represents a direct regulatory target of KMT2D. Noteworthy, 

several groups suggest that STK11 role as a master regulator of polarity and metabolism 

contributes to its tumor suppressor function.23 24 Beyond that, our ChIP-Seq data show that 

several transcription factors’ loci exhibit significantly reduced H3K4me3 occupancy in KMT2D-

silenced cells. Interestingly, it has been reported that focal rather than global loss of the 

H3K4me1/me2 marks has been observed at putative enhancers in mouse KMT2D-depleted 

lymphomas, and among the genes with concurrent expression changes were tumor 

suppressor genes.25 In the present study, we did not explore H3K4me1 and H3K4me2 

abundance on KMT2D silencing, since global loss of the marks genome-wide was not 

observed in pancreatic cancer cells. However, the possibility of H3K4me1/ me2 enrichment 

loss on KMT2D silencing in a focal manner could not be excluded. These data point to the 

complexity of a gene network contributing to the KMT2D-related metabolic phenotype of 

pancreatic cancer cells, either by the direct action of metabolic genes and/or by the secondary 

effects induced by transcription factors. 

Importance of SLC2A3 glucose transporter in pancreatic cancer. 

Many studies have reported oncogenic aberrations of key glycolytic enzymes that 

mechanistically stimulate activation of glucose uptake.26 SLC2A1 (GLUT-1) is a member of 

the GLUT family of facilitative glucose transporters that accounts for the uptake of glucose by 

malignant cells to a high extent. It is overexpressed in a wide range of human cancers, 

including pancreas,27 and forced overexpression of SLC2A1 has been shown to induce 

pancreatic cancer cellular invasiveness.28 However, in pancreatic cancer cells and xenografts 
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harbouring low KMT2D levels, minor changes in SLC2A1 levels were observed, while very 

significant alterations were found in SLC2A3 expression. We found induction of the SLC2A3 

glucose transporter triggered by KMT2D suppression, the former mediating the effect of 

KMT2D on cellular metabolism and proliferation. SLC2A3 displays a high affinity for glucose, 

thus ensuring efficient glucose uptake29; however, its expression is very low or undetectable 

in most organs of healthy adults. Of note, the impact of SLC2A3 levels on the stimulation of 

brain tumour initiating cells’ growth has been recently demonstrated,30 and pathological 

SLC2A3 overexpression has been reported in pancreatic cancer.31 In this realm, we now 

unveil a novel mechanism where the epigenome regulates the glycolytic profile of pancreatic 

cancer cells via SLC2A3 regulation. 

Disease relevance for KMT2D-regulated pathways. 

The biological findings reported in the literature suggest a cell type or context-dependent 

functional role of KMT2D in cancer. Impairment of cellular growth and invasion in breast 

cancer mouse xenografts, as well as in human colorectal and medulloblastoma cell lines, has 

been attributed to KMT2D knockdown. 32 33 On the other hand, Lee and colleagues34 showed 

that KMT2D interacts directly with p53 to promote expression of p53 target genes. Remarkably, 

its early loss has been shown to facilitate lymphomagenesis by remodelling the epigenetic 

landscape of the cancer precursor cells.35 Our study supports that KMT2D restrains 

pancreatic cancer growth through the regulation of metabolic pathways. However, the study 

of Dawkins et al36 focusing on the impact of H3K4 methyltransferases KMT2C and KMT2D in 

pancreatic adenocarcinoma biology points towards an oncogenic role for KMT2D. Specifically, 

transient knockdown of KMT2D in a panel of pancreatic cancer cell lines resulted in growth 

inhibition.36 In our study KMT2D expression was stably blocked by four different shRNA 

sequences, thus evaluating the long-term effects of KMT2D inhibition of expression. The latter 

provides confidence for the specificity of the KMT2D-induced functional effects. Moreover, we 

performed real-time cell proliferation analysis based on the application of electrical cell 

substrate impedance changes method, which exhibits many advantages over the conventional 

endpoint assays for monitoring cell proliferation. Beyond the differences in the technical set-

up, acquisition or loss of mutations by cancer cell lines could not be excluded. Nonetheless, 

the functional effects of KMT2D are supported by our mechanistic studies, showing that the 

genomic, glycolytic and lipidomic changes caused by KMT2D suppression refer and relate to 

a status of increased bioenergetic needs of proliferating cells. Furthermore, silencing of 

KMT2D causes significant alterations on the expression levels of genes with well-established 

roles in the biosynthesis, beta-oxidation, degradation or uptake facilitation of lipids, such as 

FASN, ACACA, LIPA and HMGCR. FASN, which was distinguished among the top 

differentially regulated genes on KMT2D downregulation, is essential for catalyzing the 
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formation of palmitate from acetyl-coenzyme A and malonyl-coenzyme A in the presence of 

NADPH, thus controlling the FAs biosynthesis.37 It is considered a viable candidate as 

indicator of pathological state, marker of neoplasia, as well as pharmacological treatment 

target in pancreatic cancer.38 39 In our in vitro experimental setting, FASN upregulation 

triggering increased FA synthesis possibly accounts for the moderate increase in palmitic acid 

levels, which is the first FA produced during FA synthesis and is the precursor to longer FAs. 

However, this finding was not validated in patients with pancreatic cancer (cohort III), as 

assessed by correlation analysis or KMT2D/FASN mRNA levels. This discrepancy could 

possibly be attributed to the small sample size used, which may not be adequate to detect 

significant correlations and/or the diversity of the genetic/ epigenetic patterns and other 

features of human pancreatic tumours. Nonetheless since a broader network of lipid-related 

genes are affected in KMT2D-suppressed pancreatic cancer cells, the extent to which distinct 

pathways such as lipid synthesis/ degradation/metabolism or efflux contribute to the 

phenotype of altered lipid profiles is currently under further investigation.  

Interestingly, by using adipogenesis as a synchronised model of cell differentiation, it has been 

previously indicated that KMT2D exhibits cell type-specific and differentiation stage-specific 

genomic binding and is predominantly localised on enhancers. These data suggest a stepwise 

model of enhancer activation during adipogenesis that includes cooperative recruitment of 

KMT2D to perform H3K4me1/2 on enhancer-like regions by lineage-determining transcription 

factors, such as C/EBPβ, PPARγ and C/ EBPα.17 In accordance to the concept of KMT2D as 

a component of genetic regulation that affects adipose/lipid homeostasis, our human data 

point out that patients harbouring high KMT2D expression experience greater weight loss and 

higher BMI than patients whose KMT2D levels are below the median value. The sample size 

of cohort V did not have enough power to define survival differences; however, there was a 

trend of increased survival in patients with higher levels of KMT2D. Discordance with the study 

of Dawkins et al,36 showing that reduced expression of KMT2D correlates with improved 

outcome in PDAC, most possibly arises due to sample type differences, especially given that 

cohort V consists of samples from resected (stage II) cases. It has been documented that not 

only the degree of weight loss impacts survival of patients with pancreatic cancer, but also the 

proportion of muscle and fat loss in the different compartments.40 Fat oxidation, decreased 

lipogenesis, impaired lipid deposition/adipogenesis and mainly elevated lipolysis have been 

linked to fat loss; however, the underlying mechanisms have not been clearly defined.41 It is 

tempting to speculate that KMT2D expression may account for body weight and composition 

changes during illness progression, as a factor causing alterations in glucose/lipid/metabolism. 

Taken together, our experimental strategy has revealed the mechanisms that regulate KMT2D 

expression and its downstream effectors in pancreatic oncogenesis. The present study offers 
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significant mechanistic value for potential treatment of pancreatic cancer as a metabolic 

disease regulated by the epigenome. 

 

ACKNOWLEDGEMENTS  

We thank Dr Emmanuelle Faure in the UCLA Integrated Molecular Technologies Core for her 

help and services. 

 

CONTRIBUTORS  

MK and DI conceived the project and designed the experiments. MK designed and executed 

most of the experiments. KS designed the chromatin related experiments. MH and CP 

assisted in mouse experiments, design/ development of the shRNAs, production of lentiviral 

expressing constructs and cell infections. ABT-R and SH-Y performed the 

immunohistochemical and digital pathology analysis (cohort IV). Clinical specimens were 

ascertained and provided by DK, HK, GAP, DWD, and TRD and JW processed all clinical 

information related to human patients’ cohort III and cohort V, respectively. SM-J performed 

bioinformatics analysis and generated heatmaps, GO enrichment plots and Venn diagrams. 

EJT and LLA performed expression and statistical analyses. MK wrote the manuscript, 

prepared the figures and performed the statistical analyses, and revised by KS, MEF-Z and 

DI. 

 

FUNDING  

This study was supported in part by S10RR026744 from the National Center for Research 

Resources, S10RR027926 from the National Center for Research Resources, CA136526 from 

the National Institutes of Health, and P30 DK041301/ UL1TR000124 from the Center for Ulcer 

Research and Education Digestive Diseases Research Center and the National Center for 

Advancing Translational Sciences. 

 

REFERENCES 

1 Tzatsos A, Paskaleva P, Ferrari F, et al. KDM2B promotes pancreatic cancer via Polycomb-

dependent and -independent transcriptional programs. J Clin Invest 2013;123:727–39. 

2 Mallen-St Clair J, Soydaner-Azeloglu R, Lee KE, et al. EZH2 couples pancreatic 

regeneration to neoplastic progression. Genes Dev 2012;26:439–44. 



17 
 

3 Kubicek S, Gilbert JC, Fomina-Yadlin D, et al. Chromatin-targeting small molecules cause 

class-specific transcriptional changes in pancreatic endocrine cells. Proc Natl Acad Sci U S A 

2012;109:5364–9. 

4 Badea L, Herlea V, Dima SO, et al. Combined gene expression analysis of whole-tissue and 

microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed 

in tumor epithelia. Hepatogastroenterology 2008;55:2016–27. 

5 Segara D, Biankin AV, Kench JG, et al. Expression of HOXB2, a retinoic acid signalling 

target in pancreatic cancer and pancreatic intraepithelial neoplasia. Clin Cancer Res 

2005;11:3587–96. 

6 Sausen M, Phallen J, Adleff V, et al. Clinical implications of genomic alterations in the tumour 

and circulation of pancreatic cancer patients. Nat Commun 2015;6:7686. 

7 Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of 

pancreatic cancer. Nature 2016;531:47–52. 

8 R uthenburg AJ, Allis CD, Wysocka J. Methylation of lysine 4 on histone H3: intricacy of 

writing and reading a single epigenetic mark. Mol Cell 2007;25:15–30. 

9 Fahrner JA, Eguchi S, Herman JG, et al. Dependence of histone modifications and gene 

expression on DNA hypermethylation in cancer. Cancer Res 2002;62:7213–8. 

10 Si J, Boumber YA, Shu J, et al. Chromatin remodeling is required for gene reactivation after 

decitabine-mediated DNA hypomethylation. Cancer Res 2010;70:6968–77. 

11 Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death regulation 

and biological consequences. Antioxid Redox Signal 2008;10:179–206. 

12 Zhang H, Bajraszewski N, Wu E, et al. PDGFRs are critical for PI3K/Akt activation and 

negatively regulated by mTOR. J Clin Invest 2007;117:730–8. 

13 Zha X, Hu Z, Ji S, et al. NFκB up-regulation of glucose transporter 3 is essential for 

hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth. 

Cancer Lett 2015;359:97–106. 

14 Kawauchi K, Araki K, Tobiume K, et al. p53 regulates glucose metabolism through an IKK-

NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 2008;10:611–8. 

15 Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer 

cells. Oncogenesis 2016;5:e189. 

16 Zaidi N, Lupien L, Kuemmerle NB, et al. Lipogenesis and lipolysis: the pathways exploited 

by the cancer cells to acquire fatty acids. Prog Lipid Res 2013;52:585–9. 

17 L ee JE, Wang C, Xu S, et al. H3K4 mono- and di-methyltransferase MLL4 is required for 

enhancer activation during cell differentiation. Elife 2013;2:e01503. 



18 
 

18 Kantidakis T, Saponaro M, Mitter R, et al. Mutation of cancer driver MLL2 results in 

transcription stress and genome instability. Genes Dev 2016;30:408–20. 

19 G uo C, Chang CC, Wortham M, et al. Global identification of MLL2-targeted loci reveals 

MLL2’s role in diverse signaling pathways. Proc Natl Acad Sci U S A 2012;109:17603–8. 

20 Lee S, Lee J, Lee SK, et al. Activating signal cointegrator-2 is an essential adaptor to recruit 

histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors. Molecular 

endocrinology (Baltimore, Md. 2008;22:1312–9. 

21 Lee J, Saha PK, Yang QH, et al. Targeted inactivation of MLL3 histone H3-Lys-4 

methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl 

Acad Sci U S A 2008;105:19229–34. 

22 Kim DH, Kim J, Kwon JS, et al. Critical Roles of the Histone Methyltransferase 

MLL4/KMT2D in Murine Hepatic Steatosis Directed by ABL1 and PPARγ2. Cell Rep 

2016;17:1671–82. 

23 Hezel AF, Bardeesy N. LKB1; linking cell structure and tumor suppression. Oncogene 

2008;27:6908–19. 

24 Spicer J, Ashworth A. LKB1 kinase: master and commander of metabolism and polarity. 

Curr Biol 2004;14:R383–R385. 

25 Ortega-Molina A, Boss IW, Canela A, et al. The histone lysine methyltransferase KMT2D 

sustains a gene expression program that represses B cell lymphoma development. Nat Med 

2015;21:1199–208. 

26 Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 

2008;13:472–82. 

27 Reske SN, Grillenberger KG, Glatting G, et al. Overexpression of glucose transporter 1 

and increased FDG uptake in pancreatic carcinoma. J Nucl Med 1997;38:1344–8. 

28 Ito H, Duxbury M, Zinner MJ, et al. Glucose transporter-1 gene expression is associated 

with pancreatic cancer invasiveness and MMP-2 activity. Surgery 2004;136:548–56. 

29 Simpson IA, Dwyer D, Malide D, et al. The facilitative glucose transporter GLUT3: 20 years 

of distinction. Am J Physiol Endocrinol Metab 2008;295:E242–E253. 

30 Flavahan WA, Wu Q, Hitomi M, et al. Brain tumor initiating cells adapt to restricted nutrition 

through preferential glucose uptake. Nat Neurosci 2013;16:1373–82. 

31 Yamamoto T, Seino Y, Fukumoto H, et al. Over-expression of facilitative glucose 

transporter genes in human cancer. Biochem Biophys Res Commun 1990;170:223–30. 



19 
 

32 Kim JH, Sharma A, Dhar SS, et al. UTX and MLL4 coordinately regulate transcriptional 

programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res 

2014;74:1705–17. 

33 Guo C, Chen LH, Huang Y, et al. KMT2D maintains neoplastic cell proliferation and global 

histone H3 lysine 4 monomethylation. Oncotarget 2013;4:2144–53. 

34 Lee J, Kim DH, Lee S, et al. A tumor suppressive coactivator complex of p53 containing 

ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4. Proc Natl 

Acad Sci U S A 2009;106:8513–8. 

35 Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal 

center B cell development and promotes lymphomagenesis. Nat Med 2015;21:1190–8.  

36 Dawkins JB, Wang J, Maniati E, et al. Reduced Expression of Histone Methyltransferases 

KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma. 

Cancer Res 2016;76:4861–71. 

37 Baenke F, Peck B, Miess H, et al. Hooked on fat: the role of lipid synthesis in cancer 

metabolism and tumour development. Dis Model Mech 2013;6:1353–63. 

38 Swierczynski J, Hebanowska A, Sledzinski T. Role of abnormal lipid metabolism in 

development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 

2014;20:2279–303. 

39 Tadros S, Shukla SK, King RJ, et al. De Novo Lipid Synthesis Facilitates Gemcitabine 

Resistance through Endoplasmic Reticulum Stress in Pancreatic Cancer. Cancer Res 

2017;77:5503–17. 

40 Di Sebastiano KM, Yang L, Zbuk K, et al. Accelerated muscle and adipose tissue loss may 

predict survival in pancreatic cancer patients: the relationship with diabetes and anaemia. Br 

J Nutr 2013;109:302–12. 

41 Ebadi M, Mazurak VC. Evidence and mechanisms of fat depletion in cancer. Nutrients 

2014;6:5280–97. 

 

FIGURE LEGENDS 

Figure 1: Histone methyltransferase KMT2D acts as a tumour suppressor in pancreatic 
cancer. (A) KMT2D mRNA expression levels in three cohorts of pancreatic cancer and normal 

tissues, as assessed by RT-qPCR. (B) Transient suppression of KMT2D expression by two 

different siRNAs in pancreatic cancer cells. Efficiency of KMT2D downregulation, as assessed 

by RT-qPCR (left panel) and by IB analysis (right panel). Whole cell protein extracts were 

analysed by IB analysis for total KMT2D or CREB (used as a loading control). Numbers in 

parentheses denote the average fold change of the KMT2D:CREB total protein ratio of 
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siKMT2D transiently transfected cells compared with siC#1-treated cells (set as default 1) of 

at least two independent experiments, as assessed by densitometric analysis of the 

immunoreactive bands. (C) Dynamic monitoring of cellular proliferation on KMT2D transient 

suppression by using siKMT2D#2, using the xCELLigence RTCA SP system. (D) Assessment 

of KMT2D expression levels in MIA PaCa-2 cells transfected with #2–21 shRNA against 

KMT2D that underwent clonal selection resulting in clones a, b and c, by RT-qPCR (left panel) 

and IB analysis (right panel). Numbers in parentheses denote the average fold change of the 

KMT2D:CREB total protein ratio of shKMT2D stably transfected cells compared with mock-

treated cells (set as default 1), as assessed by densitometric analysis of the immunoreactive 

bands. (E) Dynamic monitoring of the proliferation of the shKMT2D#2-21a clonal pancreatic 

cancer cell lines versus mock-transfected cells. (F) Effect of KMT2D stable suppression on 

soft agar colony formation. (G) Representative images of the excised tumours and (H) tumour 

volume (mm3) graphs of xenografts bearing KMT2D stably suppressed MIA PaCa-2 and 

CAPAN-2 cells (n=5 mice per group). For establishing shKMT2D#2-21a xenografts, MIA 

PaCa-2 or CAPAN-2 cells were injected subcutaneously in the right flank of NOD-SCID mice 

(five mice/group). (I) Representative IHC images for the proliferation marker Ki-67, 

corresponding to MIA PaCa-2 (upper two rows) and CAPAN-2 (bottom two rows) xenografts 

from mice injected with mock or shKMT2D#2-21a cells. Scale bars represent 50 μm. siC#1, 

cells transfected with a negative control scramble siRNA; siKMT2D#1, cells transfected with 

siRNA#1 for KMT2D; siKMT2D#2, cells transfected with siRNA#2 for KMT2D; mock, cells 

transfected with shRNA empty vector; shKMT2D#2–21, cells transfected with #2–21 shRNA 

for KMT2D; shKMT2D#2-21a, b or c, cells transfected with #2–21 shRNA for KMT2D that 

underwent clonal selection resulting in clones a, b and c; MX, mouse xenograft. OD, optical 

density. Statistical analyses were performed using one-way analysis of variance. Asterisks 

denote statistically significant differences, *p<0.05, **p<0.01, ***p<0.001. IB, immunoblot; IHC, 

immunohistochemical; KMT2D, histone lysine (K)-specific methyltransferase 2D; RT-qPCR, 

reverse transcription quantitative PCR; shRNA, short hairpin RNA; siRNA, small interfering 

RNA. 

Figure 2: Epigenetic regulation of KMT2D levels through DNA methylation of two CpG 
sites. (A) Experimental design for the evaluation of KMT2D transcriptional repression-

dependency on CpG methylation in pancreatic cancer. (B) Heatmap of methylation beta 

values for the selected probes (p<0.05, mean difference ≥0.25). Wilcoxon rank-sum tests were 

conducted to compare methylation array data between patients with pancreatic cancer and 

healthy controls. (C) Validation of CpG methylation levels via targeted bisulfite sequencing for 

the selected ROI (chr12: 49448986–49449286). Quantitative methylation measurements at 

the single CpG site level for untreated or 5-AZA-CdR-treated cells are box plotted (left panel) 
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or depicted as heatmaps of the methylation ratio (right panel). The colour indicates the level 

of methylation from higher to lower in yellow > orange> red order. (D) Dose response 

evaluation of 5-AZA-CdR treatment for 48 hours in KMT2D mRNA levels, as assessed by RT-

qPCR. (E) Effect of 5-AZACdR treatment for 48 hours on KMT2D protein levels, as assessed 

by IB analysis. Numbers in parentheses denote the average fold change of the KMT2D:CREB 

total protein ratio in 5-AZA-CdR-treated cells compared with 0.005% DMSO-treated cells (set 

as default 1). (F) Schematic depiction of the distinct KMT2D/hRluc constructs used; the 

engineered hRluc was coupled to the genomic region (positions −179 to +121) of the human 

KMT2D gene. Tick marks represent the number and location of CpG dinucleotides. (G) The 

efficiency of CpG methylation was assessed in unmethylated and methylated, linearized and 

gel-purified constructs by resistance to digestion with HpaII endonuclease and subsequently 

agarose gel analysis. (H, I) Relative hRluc activity after in vitro methylation of KMT2D 

constructs using the promoterless pGL4.82 (hRluc/Puro) vector gene system. HRluc mean 

fluorescence intensity was measured in MIA PaCa-2 cells transfected with either (H) untreated 

or (I) CpG methyltransferase (MSssl)-treated KMT2D/hRluc constructs. To control for 

transfection efficiency, cells were co-transfected with a plasmid containing firefly luciferase 

(Luc) reporter gene and the levels of hRluc fluorescence were averaged over all Luc 

expressing cells. Statistical analyses were performed using one-way analysis of variance. 

Asterisks denote statistically significant differences, *p<0.05, **p<0.01, ***p<0.001. 5-AZA-

CdR, 5-AZA-2'-deoxycytidine; DMSO, dimethyl sulfoxide; IB, immunoblot; KMT2D, histone 

lysine (K)-specific methyltransferase 2D; ROI, region of interest; RT-qPCR, quantitative 

reverse transcription PCR. 

Figure 3: KMT2D-regulated pancreatic cancer cells’ transcriptome and epigenome. (A) 
Effects of KMT2D silencing on the global levels of histone H3K4 monomethylation, 

dimethylation and trimethylation using IB analysis. Numbers in parentheses denote the 

average fold change of the H3K4me1, H3K4me2 or H3K4me3:H3 total protein ratio in KMT2D-

silenced cells versus siC#1-treated cells (set as default 1). (B) Enrichment scores comparing 

the read density conditions for each set of peak regions are shown in the jittered boxplots. The 

enrichment values were tested with the Mann-Whitney U test (p<0.001). (C) Overlap of 

H3K4me3 peaks on KMT2D suppression using two different siRNAs. (D) Effect of KMT2D 

silencing on the genomic distribution of H3K4me3 peaks in MIA PaCa-2 cells. Pie chart 

indicates the enriched H3K4me3 peaks in negative siRNA versus siKMT2D#2-treated cells. 

(E) Distribution of H3K4 trimethylation mark around TSS. (F) GO terms associated with 

H3K4me3 binding sites were determined as follows: ChIP-seq peaks found in siC#1-treated 

cells versus peaks found in cells treated with siKMT2D#2 were associated with the nearest 

ENSEMBL transcript and processed using the DAVID (V.6.7) tool. The data presented are 
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log-transformed p value of GO terms found to be enriched in the tested group of genes. (G) 
Heatmap showing the differentially expressed genes in MIA PaCa-2 cells on KMT2D 

suppression. Data were filtered using a p value cut-off of 0.05 and a fold change cut-off of 2.0. 

Clustering dendrograms show the relative expression values according to the following 

colouring scheme: red: high; black: moderate; green: low. (H) List of metabolism-associated 

canonical pathways derived from the IPA GO algorithms for the KMT2D-regulated genes (from 

figure 3G). −log (p value) is measured by the bar length, while R refers to the number of 

molecules from the data set that map to the pathway listed divided by the total number of 

molecules that map to the pathway from within the IPA knowledge base. (I) OCR/ECAR curves 

for KMT2D stably transfected pancreatic cancer cells (Seahorse Technology). R, ratio; oligo, 

oligomycin; FCCP, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone; RM, 

rotenone/myxothiazol. ChIP-seq, chromatin immunoprecipitation-sequencing; ECAR, 

extracellular acidification rate; GO, Gene Ontology; IB, immunoblot; IPA, Ingenuity Pathway 

Analysis; KMT2D, histone lysine (K)-specific methyltransferase 2D; OCR, oxygen 

consumption rate; siC#1, cells transfected with a negative control scramble siRNA; 

siKMT2D#1, cells transfected with siRNA#1 for KMT2D; siKMT2D#2, cells transfected with 

siRNA#2 for KMT2D; siRNA, small interfering RNA; TSS, transcription start site. 

Figure 4: KMT2D regulates pancreatic cancer cell growth and metabolism by affecting 
SLC2A3 glucose transporter. (A) Heatmap summarising the differentially expressed 

glycolysis-related genes in MIA PaCa-2 cells on KMT2D suppression. Data were filtered using 

a p value cut-off of 0.05 and a fold change cut-off of 1.25. (B) SLC2A3 mRNA expression in 

pancreatic cancer cells on KMT2D silencing. (C) SLC2A3 expression in MIA PaCa-2 

xenografts from mice injected with mock or shKMT2D#2-21a cells, as assessed by RT-qPCR. 

(D) Representative IB images for the activated and total (D) mTOR and (E) NF-κB p65 on 

KMT2D silencing. Numbers in parentheses denote the average fold change of the 

phosphorylated:total protein ratio of KMT2D-silenced cells versus siC#1-treated cells (set as 

default 1) of at least two independent experiments. (F) Representative IB images for SLC2A3, 

mTOR, Rictor and CREB protein levels on treatment of MIA PacA-2 cells harbouring 

differential KMT2D levels with siRNAs against mTOR, Rictor or the respective scramble 

control. Numbers in parentheses denote the average fold change of the SLC2A3:CREB total 

protein ratio of siRNAtreated cells versus siC#1-treated cells (set as default 1). (G) Treatment 

of MIA PaCa-2 cells with inhibitors of NF-κB activation for 24 hours reverses the KMT2D-

mediated increase in SLC2A3 mRNA levels. Effects of SLC2A3 silencing on the (H) 
bioenergetic status, (I) proliferation and (J) colony formation ability of KMT2D-suppressed 

cells. Statistical analyses were performed using one-way analysis of variance. Asterisks 

denote statistically significant differences, *p<0.05, **p<0.01, ***p<0.001. DMSO, dimethyl 
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sulfoxide; ECAR, extracellular acidification rate; FCCP, carbonyl cyanide-4-(trifluoromethoxy) 

phenylhydrazone; IB, immunoblot; KMT2D, histone lysine (K)-specific methyltransferase 2D; 

mechanistic target of rapamycin (mTOR);NF-κB, nuclear factor kappa-light-chain-enhancer of 

activated B cells; OCR, oxygen consumption rate; OD, optical density; oligo, oligomycin; RM, 

rotenone/myxothiazol; RT-qPCR, reverse transcription quantitative PCR;siRNA; small 

interfering RNA; siC#1, cells transfected with a negative control scramble siRNA; siKMT2D#1, 

cells transfected with siRNA#1 for KMT2D; siKMT2D#2, cells transfected with siRNA#2 for 

KMT2D; siSLC2A3, cells transfected with siRNA for SLC2A3. 

Figure 5: KMT2D inhibition alters the lipid composition and cholesterol content in 
pancreatic cancer. (A) GO-based annotation was used to perform functional enrichment 

analysis using the DAVID (V.6.7) tool. Fold enrichment of genes (associated with lipid 

metabolic processes) regulated by KMT2D levels is measured by the bar length while p value 

represents the significance of the enrichment. (B) Heatmap summarising the differentially 

expressed lipid metabolism-related genes in MIA PaCa-2 cells on KMT2D suppression. Data 

were filtered using a p value cut-off of 0.05 and a fold change cut-off of 1.5. (C) Body weight 

graphs of mouse xenografts bearing MIA PaCa-2 or CAPAN-2 shKMT2D#2-21a clonal cell 

lines and mock transfected cells (n=5 mice per group). (D) Column graph illustrating 

quantitative changes of the top 3 FAs regulated by KMT2D. (E) Time-dependent and dose-

dependent effects of exogenously added FAs on cell proliferation, as assessed by CellTiter 

Glo Luminescence Cell Viability Assay. (F) Detection of cholesterol uptake within MIA PaCa-

2 cultured cells, as assessed by fluorescence microscopy. Scale bars represent 50 μm. (G, 

H) Time-dependent effect of LDLR or SLC2A3 silencing, SC 26196 and SC 204990 inhibitors 

on cell proliferation in high and low KMT2D-expressing cells, as assessed by CellTiter Glo 

Luminescence Cell Viability Assay. Statistical analyses were performed using one-way 

analysis of variance. Asterisks denote statistically significant differences, *p<0.05, **p<0.01, 

***p<0.001. FA, fatty acid; FBS, fetal bovine serum; GO, Gene Ontology; KMT2D, histone 

lysine (K)-specific methyltransferase 2D; LDLR, low-density lipoprotein receptor. 

Figure 6: Correlation of KMT2D levels between its targets and disease aggressiveness. 
(A) (i) Representative images (10× magnification) of KMT2D expression, as assessed by IHC 

analysis, in matched cancer and normal tissues from patients with pancreatic cancer (cohort 

IV). (ii) Automated image analysis using the Spectrum Software V.11.1.2.752 (Aperio) was 

performed for nuclear staining quantification. (B) Correlation of KMT2D expression with overall 

patient survival. Kaplan-Meier survival curves of patients harbouring below median (<3.917) 

and above median (>3.917) KMT2D levels derived from cohort V. (C, D) Correlation of KMT2D 

levels with SLC2A3 expression in patients with pancreatic cancer based on the study by 

Badea et al4 and as assessed by RT-qPCR (cohort III). (E) Representative images (10× 
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magnification) of phospho-NF-kB p65 (Ser 536) and SLC2A3 expression, as assessed by IHC 

analysis, in matched cancer and normal tissues from patients with pancreatic cancer (cohort 

IV). Scale bars represent 50 μm. r, Pearson correlation coefficient; Kaplan-Meier test was 

used for univariate survival analysis. Cox proportional hazard model was used for multivariate 

analysis and for determining the 95% CI. Statistical analyses were performed using one-way 

analysis of variance or Pearson correlation. Asterisks denote statistically significant 

differences, **p<0.01. BMI, body mass index; IHC, immunohistochemical; KMT2D, histone 

lysine (K)-specific methyltransferase 2D; NF-kB, nuclear factor kappa-light-chain-enhancer of 

activated B cells; RT-qPCR, reverse transcription quantitative PCR. 

Figure 7: Schematic depiction of KMT2D transcriptional regulation and downstream 
mechanistic targets and pathways in pancreatic cancer. Methylation of two single CpG 

sites transcriptionally represses KMT2D histone methyltransferase expression. Suppression 

of KMT2D induces aerobic glycolysis and lipid levels in pancreatic cancer. SLC2A3 consists 

a key mediator of the cellular growth and metabolic effects triggered by KMT2D 

downregulation. Docosadienoic, docosatrienoic and docosatetraenoic acid represent the top 

KMT2D-regulated fatty acids and harbour oncogenic properties in pancreatic cancer cells. 

KMT2D, histone lysine (K)-specific methyltransferase 2D. 

 

TABLE LEGENDS 

Table 1: Quantitative LC-MS data of fatty acids and total cholesterol in MIA PaCa-2 cells 

pretreated with siC#1 or siKMT2D#2. The top three lipids most significantly elevated by 

KMT2D reduction are shown in bold. Statistical analyses were performed using one-way 

analysis of variance. KMT2D, histone lysine (K)-specific methyltransferase 2D. 

Table 2: Pancreatic carcinomas were subdivided into two groups: carcinomas with below 

median (<3.917) KMT2D expression and carcinomas with above median (>3.917) KMT2D 

expression. n is the number of patients with clinical information. Clinical correlations were 

examined using the SAS 9.4 for LINUX platform. BMI, body mass index; KMT2D, histone 

lysine (K)-specific methyltransferase 2D; LC-MS, Liquid Chromatography-Mass Spectrometry. 

Table 3: Quantitative LC-MS data of fatty acids and total cholesterol in pancreatic cancer 

biopsies versus normal tissues. Pancreatic carcinomas from cohort II were subdivided into 

two groups: carcinomas with below median (<0.3) KMT2D expression and carcinomas with 

above median (>0.3) KMT2D expression. Four cancerous tissues displaying below median 

(<0.3) KMT2D levels underwent lipidomic profiling. The top three lipids most significantly 

elevated are shown in bold. Statistical analyses were performed using one-way analysis of 

variance.∞ represents infinity as the denominator is so small that is virtually zero; KMT2D, 
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histone lysine (K)-specific methyltransferase 2D; LC-MS, liquid chromatography mass 

spectrometry. 

 

TABLES 

Table 1: Effect of KMT2D silencing on the lipidomic profile of pancreatic cancer cells 

 
 
Lipid 

siC#1 (ng) per 
50000 cells 

 siKMT2D#2 
(ng) per 
50000 cells 

  Percentage  
change 

P values 

Docosatrienoic acid 0.6 1.5 +150 0.00482 
Docosadienoic acid 0.35 1 +186 0.00971 
Docosatetraenoic acid 1.425 3.5 +150 0.01084 

Nervonic acid  4.1  10.1 +146.3 0.00217 
Eicosadienoic acid   2.825 6.55 +131.8 0.00557 
Dihomo-g-linolenic acid 1.3 2.925 +125 0.0075 
Eicosapentaenoic acid 8 17.075 +113.4 0.19345 
Eicosenoic acid 32.675 68.675 +110.2 0.00116 
Docosapentaenoic acid 
(n=3) 

4.55    9.1 +100 0. 0 00 229 

Docosenoic acid 3.65 6.825 +87 0.00364 
Docosahexaenoic acid 4.675   8.2  +75.4 0.02643 
Arachidonic acid 8.933 13.825  +54.8 0.009 
g-Linolenic acid 8.325 12.175   +46.2 0.16032 
Oleic acid          715.6 1049.775   +46.7 0.01402 
a-Linolenic acid 4.1   5.9   +43.9 0.16846 
Stearic acid           2563.2   3667.875   +43.1 0.11082 
Linoleic acid         23.7 33.575   +41.7 0.07341 
Hexacosanoic acid            7.05 9.95   +41.1 0.13026 

   Cholesterol   359.25 474.75   +32.2 0.04811 
Dodecanoic acid         82.25      108.1    +31.4 0.0013 
Palmitoleic acid 118.775 148.575    +25.1 0.26513 
Lignoceric acid 25.375 30.825    +21.5 0.21665 
Palmitic acid                 7676  8941.525    +16.5 0.05763 
Docosanoic (Behenic 
acid) 

9.575 10.475    +9.4 0.38668 

Heptadecenoic acid              71.55 78.075    +9.1 0.10477 
Pentadecanoic 486.375 524.125    +7.8 0.27158 
Heptadecanoic acid            91.15      96.85    +6.3 0.35989 
Arachidic acid            20.55      21.65    +5.4 0.5251 
Myristic acid 459.625 480.375    +4.5 0.08533 
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Table 2: Correlation of KMT2D expression with demographic and clinical characteristics of patients 

with pancreatic cancer (cohort V) 

KMT2D expression below median 
(≤3.917) (n=109) 

Above median 
(>3.917) (n=111) 

P 
values 

Age at diagnosis   0.4976 
n 86 102  
Mean (SD) 64.65 (11.72) 64.01 (11.53)  
Median 66.50 63.50  
Q1, Q3 55.00, 75.00 57.00, 74.00  
Range (37.00–88.00) (41.00–92.00)  

Vital status   0.1274 
Missing 10 5  
Alive 14 (14.1%) 8 (7.5%)  
Deceased 85 (85.9%) 98 (92.5%)  

Survival (days) 
n 69 89  
Events 60 81  
Median survival days 712.0 (552.0–1017.0) 608.0 (518.0–811.0)  
5-year survival rate 11.7% (3.5%–20.0%) 19.7% (11.3%–28.2%)  
Year 5, n at risk 6 15  

Sex   0.2999 
Missing 10 5  
Female 52 (52.5%) 48 (45.3%)  
Male 47 (47.5%) 58 (54.7%)  

Race   0.3702 
Missing 14 5  
1=American Indian/Alaskan 
Native 

0 (0.0%) 1 (0.9%)  

2=Asian/Asian-American 2 (2.1%) 0 (0.0%)  
3=Black/African–American 1 (1.1%) 1 (0.9%)  
5=White 92 (96.8%) 104 (98.1%)  

Usual adult BMI   0.0040 
n 74 95  
Mean (SD) 27.31 (5.40) 29.92 (5.64)  
Median 27.01 29.19  
Q1, Q3 24.24, 30.04 25.75, 32.96  
Range (15.31–43.72) (18.88–46.18)  

Usual adult BMI (<30, 30+)   0.0367 
Missing 35 16  
<30 55 (74.3%) 56 (58.9%)  
30+ 19 (25.7%) 39 (41.1%)  

Weight loss   0.0005 
Missing 10 5  
No 43 (43.4%) 22 (20.8%)  
Yes 56 (56.6%) 84 (79.2%)  

Pounds lost   0.0001 
n 99 106  
Mean (SD) 5.116 (6.191) 9.3664 (8.323)  
Median 2.698 7.937  
Q1, Q3 0.00, 9.071 4.499, 13.607  
Range (0.00–27.215) (0.00–38.555)  

Stage at surgery   0.3117 
Missing 49 26  
IA 0 (0.0%) 1 (1.2%)  
IB 6 (10.0%) 6 (7.1%)  
IIA 12 (20.0%) 28 (32.9%)  
IIB 42 (70.0%) 49 (57.6%)  
IV 0 (0.0%) 1 (1.2%)  
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Table 3: Lipidomic profiling of low KMT2D-expressing pancreatic cancer biopsies versus normal 
pancreata 
 
 
Lipid 

Adjacent 
normal 

Cancerous 
tissue 

Percentage 
change 

 
P values 

Docosatrienoic acid – 0.0125 ∞ 0.04006 
Docosadienoic acid – 0.0225 ∞ 0.02401 
Docosatetraenoic acid 0.0325 0.2125 +553.8 0.03181 

Nervonic acid 0.05 0.275 +450 0.07178 
Eicosadienoic acid 0.0475 0.6325 +1232 0.06733 
Dihomo-g-linolenic acid 0.075 0.34 +353 0.03279 

Eicosapentaenoic acid 0.085 0.1125    +32.35 0.64401 
Eicosenoic acid 1.0775 13.371 +1426.2 0.06179 
Docosapentaenoic acid (n=3) 0.045 0.2025  

+350 
0.08372 

Docosenoic acid 0.2375 1.34 +464.21 0.03204 
Docosahexaenoic acid 0.055 0.1625 +195.45 0.09208 

Arachidonic acid 0.695 1.32 +89.93 0.07636 
Oleic acid 36.4525 347.835 +854.2 0.13282 
a-Linolenic acid and g-
linolenic acid 

0.0225 0.315 +1300 0.05199 

Stearic acid 15.275 20.23 +32.94 0.59416 
Linoleic acid 3.1525 15.5675 +393.8 0.09712 
Hexacosanoic acid 0.0125 0.0225 +80.0 0.71105 

Cholesterol 23.28843 53.64114 +130.33 0.00787 
Dodecanoic acid 0.5075 1.87 +268 0.03587 
Palmitoleic acid 3.515 29.14 +788 0.09423 
Lignoceric acid 0.12 0.27 +125 0.29288 
Palmitic acid 25.89 59.3875 +129.4 0.17425 
Docosanoic (Behenic acid) 0.13 0.2725 +109.62 0.02932 

Heptadecenoic acid 0.4525 3.64 +704 0.10735 
Pentadecanoic 0.34 1.86 +447.1 0.06233 
Heptadecanoic acid 0.33 1.72 +421.2 0.06334 
Arachidic acid 0.14 0.5875 +319.64 0.02278 
Myristic acid 1.5275 10.325 +675.9 0.05614 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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Supplementary Figure S1: Histone methyltransferase KMT2D acts as a tumor 

suppressor in pancreatic cancer. 

(A) Differential expression of chromatin regulators including KDM8, KDM4C, SETD6, 

SUV420H1, KDM2A, KDM5B and SETDB2 in pancreatic carcinoma versus normal 

tissues originating from Cohort II, as assessed by RT-qPCR. (B, C) Differential 

expression of Lysine (K)-Specific Methyltransferase 2D (KMT2D) in pancreatic 
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carcinoma versus normal tissues, based on 2 studies listed in Oncomine database [1 2]. 

(D, E) Relative mRNA levels of KMT2B and KMT2C in Cohorts II and III, as assessed 

by RT-qPCR. (F, G) Effect of transient KMT2D suppression by using siKMT2D#1 and 

the respective scramble control on pancreatic cancer cell proliferation, as assessed by 

the xCELLigence system. (H) Efficiency of KMT2D stable depletion by using 4 different 

shRNAs in MIA PaCa-2 cells, as assessed by RT-qPCR. (I-L) Effect of stable KMT2D 

suppression by using 4 different shRNAs on pancreatic cancer cell proliferation, as 

assessed by the xCELLigence system. (M, N) Assessment of the proliferative capacity 

of shKMT2D#2-21b clonal cell lines versus mock transfected cells. (O) Quantification of 

the colonies formed by shKMT2D#2-21 a and b clonal cell lines versus mock 

transfected cells. (P, Q) Tumor weight graphs of xenografts bearing KMT2D stably 

suppressed MIA PaCa-2 and CAPAN-2 cells (5 mice/group). KMT2D expression in MIA 

PaCa-2 and CAPAN-2 xenografts from mice injected with mock or shKMT2D#2-21a 

cells, as assessed by RT-qPCR (R) and IHC analysis (S). (T) Representative images of 

the excised tumors and (U) tumor volume (mm3) (V) and tumor weight graphs of 

xenografts from mice injected with mock or shKMT2D#2-21b cells. For establishing 

shKMT2D#2-21b xenografts, 3.5*106 MIA PaCa-2 and 4.5*106 CAPAN-2 cells were 

injected subcutaneously in the right flank of NOD-SCID mice (5 mice/group). siC#1, 

cells transfected with a negative control scramble siRNA; siKMT2D#1, cells transfected 

with siRNA#1 for KMT2D; mock, cells transfected with shRNA empty vector; 

shKMT2D#1-19, cells transfected with #1-19 shRNA for KMT2D; shKMT2D#1-21, cells 

transfected with #1-21 shRNA for KMT2D; shKMT2D#2-19, cells transfected with #2-19 

shRNA for KMT2D; shKMT2D#2-21, cells transfected with #2-21 shRNA for KMT2D; 
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shKMT2D#2-21a or b, cells transfected with #2-21 shRNA for KMT2D that underwent 

clonal selection resulting in clones a and b; MX, Mouse Xenograft. Statistical analyses 

were performed using one-way ANOVA. Asterisks denote statistically significant 

differences, * P<.05, ** P<.01, *** P<.001 
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Supplementary Figure S2. Epigenetic regulation of KMT2D levels through DNA 

methylation of two different CpG sites. 

(A) CpG methylation validation via Targeted Bisulfite Sequencing for the selected region 

of interest (ROI) (chr12: 49448986-49449286). Quantitative methylation measurements 

at the single-CpG-site level for untreated or 5-AZA-2'-deoxycytidine (5-AZA-CdR)-

treated BxPC-3, CAPAN-1 and CFPAC-1 cells are box plotted or depicted as heatmaps 

of the methylation ratio. The color indicates the level of methylation from higher to lower 

in yellow > orange > red order. (B) Dose response evaluation of 5-AZA-CdR treatment 

for 96 h of KMT2D mRNA levels, as assessed by RT-qPCR. Statistical analyses were 

performed using one-way ANOVA. Asterisks denote statistically significant differences, * 

P<.05, ** P<.01 
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C 

 

 

Supplementary Figure S3: Assessment of the global H3K4me3 levels of control or 

KMT2D-silenced cells upon 5-AZA-CdR treatment. 

Effect of 5-AZA-CdR treatment for 48 h on the tri-methylated form of histone H3 at 

lysine 4 (H3K4me3) levels in control or KMT2D-silenced cells, as assessed by (A) 

Immunoblot (IB) analyses and (B) the quantification of the respective immunoreactive 

bands of 2 independent experiments. Statistical analyses were performed using one-
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way ANOVA. Asterisk denotes statistically significant differences, * P<0.05. (C) 

Numbers in parentheses denote the average-fold change of the ratio H3K4me1:CREB 

total protein (upper lane) and H3K4me2:CREB (lower lane) of 5-AZA-CdR-treated cells 

versus non-treated cells (set as default 1). siKMT2D#2, cells transfected with siRNA#2 

for KMT2D. 

 

 
 

Supplementary Figure S4: ChIP-seq signals of H3K4me3 in KMT2D-silenced cells. 

Effects of KMT2D silencing measured by ChIP-seq on H3K4me3 occupancy of the 

General Transcription Factor IIA Subunit 1 (GTF2A1) genomic region. The enrichment 

values were tested with the Mann-Whitney U test (P<0.001). 
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Supplementary Figure S5: Evaluation of STK11 as a direct KMT2D transcriptional 

target. 

(A) Profiles of H3K4me3 ChIP-seq peaks at the Serine/Threonine Kinase 11 (STK11) 

locus upon KMT2D suppression. The x-axes indicate the genomic region. The y-axes 

represent the fold enrichment of H3K4me3 peaks compared with 2% input control. The 
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enrichment values were tested with the Mann-Whitney U test (P<0.001). (B) Luciferase 

activity mediated by STK11 promoter upon KMT2D silencing was evaluated 28 h after 

transfection of the STK11_pLightSwitch_ Prom Reporter or pLenti CMV Puro LUC 

vectors in MIAPaCa-2 cells. (C) STK11 mRNA levels in pancreatic cancer cell lines 

transiently-silenced of KMT2D, as assessed by RT-qPCR. Statistical analyses were 

performed using one-way ANOVA. Asterisk denotes statistically significant differences, * 

P<0.05 
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Supplementary Figure S6: KMT2D histone methyltransferase regulates pancreatic 

cancer cell metabolism. 

 (A) Endogenous nicotinamide adenine dinucleotide phosphate (NADPH) levels of MIA 

PaCa-2 cells pretreated with scramble siRNA or 2 different siRNAs against KMT2D, as 

assessed by the NADP/NADPH-Glo™ bioluminescent Assay. (B-C) Effects of KMT2D 

suppression, by using 2 different shKMT2D-stably transfected populations for each cell 

line on pancreatic cancer cells’ bioenergetic profile, as assessed by the XF24-3 

Analyzer. Effects of KMT2D silencing, by using 2 different siRNAs in (D and E) lactate 

production and (F and G) glucose uptake. Average basal OCR and ECAR were further 

normalized per protein for KMT2D stably-depleted cells. OCR, Oxygen Consumption 

Rate; ECAR, Extracellular Acidification Rate; 2-DG6P, the 2-deoxyglucose (2-DG) 

glucose analogue phosphorylated by hexokinase to 2-DG6P. Statistical analyses were 



19 

 

performed using one-way ANOVA. Asterisks denote statistically significant differences, * 

P<0.05, ** P<0.01, *** P<0.001  

(i) 

 

(ii) 

 

 

Supplementary Figure S7: Assessment of SLC2A1 mRNA levels in mouse 

xenografts. 

Solute Carrier Family 2 Member 1 (SLC2A1) expression levels in xenografts from mice 

injected with mock or shKMT2D#2-21a (i) MIA PaCa-2 or (ii) CAPAN-2 cells, as 

assessed by RT-qPCR analysis. Statistical analyses were performed using one-way 

ANOVA.  

(i) (ii) 
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Supplementary Figure S8: Assessment of SLC2A3 mRNA levels and protein 

levels upon KMT2D genetic manipulation. 

(i) Solute Carrier Family 2 Member 3 (SLC2A3) expression levels in xenografts from 

mice injected with mock or shKMT2D#2-21a CAPAN-2 cells, as assessed by RT-qPCR 

analysis. (ii) Effect of KMT2D silencing by using 2 different siRNAs on SLC2A3 protein 

levels, as assessed by IB analysis. Numbers in parentheses denote the average-fold 

change of the ratio SLC2A3 : CREB total protein of siKMT2D-transiently transfected 

cells compared with siC#1-treated cells (set as default 1) of 2 independent experiments, 

as assessed by densitometric analysis of the immunoreactive bands. Statistical 

analyses were performed using one-way ANOVA. Asterisk denotes statistically 

significant differences, * P<0.05 

 

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

R
el

at
iv

e 
S

L
C

2A
3 

m
R

N
A

 l
ev

el
s

*

        CAPAN-2 
Mouse Xenografts

(n=5)
shKMT2D#2-21amock

(n=5)



21 

 

 

Supplementary Figure S9: Assessment of REL-associated protein mRNA levels 

upon KMT2D genetic manipulation. 

Effect of KMT2D silencing on REL-associated protein (p65) expression, as assessed by 

RT-qPCR analysis. Statistical analyses were performed using one-way ANOVA. 

 

                                          

 

Supplementary Figure S10: Effect of pharmacological inhibition of mTORC1 on 

the SLC2A3 levels upon KMT2D suppression. 

Representative IB images for the indicated antibodies upon treatment of MIA PacA-2 

cells harboring differential KMT2D levels with 100 nM rapamycin for 24 h. Numbers in 

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

R
el

at
iv

e 
R

E
L

A
 m

R
N

A
 le

ve
ls

 siC#1
 siKMT2D#1
 siKMT2D#2

CAPAN-2MIA PaCa-2



22 

 

parentheses denote the average-fold change of the ratio SLC2A3 : CREB total protein 

of drug-treated cells versus non-treated cells (set as default 1). 
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Supplementary Figure S11: Phospho-NF-kB (Ser 536) and SLC2A3 staining 

patterns in mouse xenografts bearing KMT2D-depleted or mock-transfected 

pancreatic cancer cells. 
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Representative images (10x magnification) of (A) phospho-NF-kb p65 (Ser 536) and (B) 

SLC2A3 expression, as assessed by IHC analysis, in tumors from xenografts bearing 

KMT2D stably-suppressed or mock-transfected MIA PaCa-2 cells. Scale bars represent 

50 μm.  

Supplementary Figure S12: Assessment of FASN expression levels upon KMT2D 

suppression. 

(A) Fatty Acid Synthase (FASN) expression levels in KMT2D transiently-silenced 

pancreatic cancer cells, as assessed by RT-qPCR analysis. (B) FASN expression levels 

in KMT2D-transiently silenced pancreatic cancer cells, as assessed by IB analysis. (C) 

FASN mRNA levels in xenografts from mice injected with mock or shKMT2D#2-21a 

cells, as assessed by RT-qPCR analysis. Statistical analyses were performed using 

one-way ANOVA. Asterisks denote statistically significant differences, * P<0.05, ** 

P<0.01, *** P<0.001 
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(i) (ii) 

 

Supplementary Figure S13: Assessment of body weight changes in mice injected 

with control or KMT2D-lacking pancreatic cancer cells. 

Body weight graphs of mouse xenografts bearing (i) MIAPaCa-2 or (ii) CAPAN-2 

shKMT2D#2-21b clonal cell lines and mock-transfected cells (n=5 mice per group). 

Statistical analyses were performed using one-way ANOVA. 
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Supplementary Figure S14: Effects of docosadienoic, docosatrienoic and 

docosatretraenoic acid on pancreatic cancer cell invasiveness in vitro.  

(A) Representative images of invading cells upon treatment with docosadienoic, 

docosatrienoic or docosatretraenoic acid for 22 h and (B) the respective quantification. 

Data are expressed as the mean number of invading cells per field±SE.  
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Supplementary Figure S15: KMT2D staining patterns in matched pancreatic 

cancer and normal human tissues. 

(A) Representative images (4x magnification) of KMT2D expression as assessed by 

IHC analysis. Scale bars represent 40 μm. (B) Graphs for nuclear staining quantification 

of KMT2D expression in normal pancreata and matched tumors derived from Stage I or 

Stage II pancreatic cancer patients (Cohort IV). 
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Supplementary Figure S16: Correlation of KMT2D expression with overall patient 

survival. 

Kaplan-Meier survival curves of patients derived from Cohort III, harboring below 

median (<.25) and above median (>.25) KMT2D levels. 19 out of 22 cases were 

stratified as Stage III, 1 case as Stage IV pancreatic cancer and 1 case remains 
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uncharacterized. r, Pearson correlation coefficient; Statistical analyses were performed 

using Pearson correlation.  

SUPPLEMENTARY TABLES 

Table S1 

Gene symbols Fold change        P value        q value        Probes 

KMT2D 
KDM2A 
KDM4C 
KDM5B 
KDM8 

SETDB2 
SETD6 
SETD6 

SUV420H1 

-1.741141121 
1.717960305 
-1.848905517 
1.825971671 
-2.020680417 
-1.72662285 

-1.849110572 
-1.785867564 
-1.705577585 

.095383814 

.223050879 

.002576512 

.020177382 
.0000928 

.006398742 

.001285416 

.001087622 
.0073486 

.253115 

.444714 

.041733 

.086848 

.001968 
.03863 
.01239 

.011024 

.042803 

227527_at 
208988_at 

1556493_a_at 
201548_s_at 
220070_at 
235339_at 

1554555_a_at 
219751_at 
222566_at 

 

Supplementary Table S1: Differential expression of chromatin regulators in 

pancreatic cancer. 

Table of standardized (Z-scores) expression of the corresponding histone 

methyltransferases (KMTs) and demethylases (KDMs) in pancreatic cancer as well as 

adjacent normal tissues originating from Cohort I, as assessed by DNA microarray 

analysis (Affymetrix U133 Gene ChIP Set). Multi-array analysis followed by filtering of 

uninformative and low variance probes revealed 8 epigenetic factors to be up- or down-

regulated ≥1.5 fold relatively to normal samples. Array fold change is generally reported 

as log value but has been converted to an arithmetic value for comparison purposes. 
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Table S2 

  MIA PaCa‐2 

Time 
(hours) 

Cell Index  
siC#1  
(n=4) 

Cell Index  
siKMT2D#2 

(n=4) 

P value 
siKMT2D#2 vs siC#1 

 

0 

1.556944444 

3.306944444 

4.806944444 

6.556944444 

8.056944444 

9.806944444 

11.55694444 

13.05694444 

14.80694444 

16.30694444 

18.05694444 

19.55694444 

21.30694444 

22.80694444 

24.55694444 

26.05694444 

27.80694444 

29.55694444 

31.05694444 

32.80694444 

34.30694444 

36.05694444 

37.55694444 

39.30694444 

40.80694444 

42.55694444 

0 

0.01993 

0.17238 

0.23896 

0.28382 

0.31366 

0.34585 

0.37777 

0.40391 

0.43768 

0.46548 

0.48411 

0.49563 

0.51023 

0.53428 

0.57582 

0.61471 

0.66688 

0.71799 

0.76111 

0.79299 

0.82135 

0.84057 

0.87557 

0.92721 

0.97444 

1.03478 

0 

0.00307 

0.10747 

0.17123 

0.21657 

0.24275 

0.26983 

0.29253 

0.32055 

0.34307 

0.36034 

0.37485 

0.38574 

0.39866 

0.42219 

0.45676 

0.49414 

0.55229 

0.58852 

0.6173 

0.65679 

0.6842 

0.7155 

0.73416 

0.77848 

0.82619 

0.87915 

0 

0.0161 

0.13113 

0.188 

0.23608 

0.26066 

0.29308 

0.31851 

0.34242 

0.37141 

0.39357 

0.40839 

0.4169 

0.42816 

0.4468 

0.48193 

0.52977 

0.58403 

0.62445 

0.65519 

0.68778 

0.71556 

0.73749 

0.77224 

0.81946 

0.8596 

0.92693 

0 

0.02633 

0.17127 

0.23339 

0.28436 

0.31161 

0.34035 

0.36801 

0.39765 

0.42657 

0.44251 

0.46096 

0.46539 

0.47528 

0.49818 

0.53862 

0.57605 

0.6156 

0.66588 

0.69779 

0.72991 

0.75847 

0.78684 

0.82506 

0.86033 

0.90322 

0.9688 

0 

0.01218 

0.16564 

0.2298 

0.27899 

0.31102 

0.34456 

0.38798 

0.4221 

0.4706 

0.51015 

0.55653 

0.58461 

0.62531 

0.65059 

0.68852 

0.73841 

0.79959 

0.8643 

0.91719 

0.97381 

1.02194 

1.07253 

1.11671 

1.15278 

1.20265 

1.25158 

0 

0.01417 

0.14392 

0.19187 

0.2319 

0.25793 

0.28638 

0.31856 

0.34908 

0.39153 

0.42361 

0.46225 

0.49454 

0.51577 

0.54778 

0.58323 

0.62387 

0.67146 

0.74643 

0.78763 

0.86092 

0.90791 

0.94268 

0.9901 

1.04075 

1.06349 

1.13502 

0 

0.04009 

0.15754 

0.20576 

0.23863 

0.26227 

0.285 

0.3136 

0.33966 

0.38318 

0.42656 

0.46366 

0.49707 

0.51739 

0.54651 

0.5879 

0.62212 

0.68054 

0.7338 

0.78436 

0.82865 

0.88465 

0.9306 

0.97506 

1.0271 

1.06287 

1.13759 

0 

0.04838 

0.16934 

0.21341 

0.24487 

0.26644 

0.29172 

0.31742 

0.34518 

0.38488 

0.4204 

0.45651 

0.47523 

0.5098 

0.53385 

0.56766 

0.60624 

0.65628 

0.69781 

0.74619 

0.80414 

0.83918 

0.88986 

0.91518 

0.95036 

0.99585 

1.05507 

 

0.2787 

0.45282 

0.90455 

0.75331 

0.73415 

0.67265 

0.86442 

0.94257 

0.69096 

0.39104 

0.17771 

0.08277 

0.0539 

0.04379 

0.0515 

0.05856 

0.05531 

0.0502 

0.04052 

0.01992 

0.01372 

0.00792 

0.00931 

0.00954 

0.01243 

0.01024 



30 

 

44.05694444 

45.80694444 

47.55694444 

49.05694444 

50.80694444 

1.08756 

1.14759 

1.20711 

1.24837 

1.30284 

0.91975 

0.97162 

1.0233 

1.07129 

1.12654 

0.98197 

1.03087 

1.078 

1.1352 

1.19836 

1.02528 

1.0803 

1.13413 

1.19125 

1.24521 

1.30741 

1.38722 

1.44859 

1.51097 

1.57876 

1.18536 

1.24957 

1.32177 

1.38801 

1.45095 

1.19222 

1.26116 

1.33128 

1.3996 

1.47003 

1.10988 

1.17628 

1.24172 

1.30525 

1.37221 

0.01116 

0.0105 

0.00813 

0.00558 

0.0045 

 

 

Supplementary Table S2: Xcelligence Cell Index and P values of siKMT2D#2-treated 

versus control MIA PaCa-2 cells.  

List of Cell Index values derived from the measured impedances and continuously displayed on 

the Xcelligence Software user interface. Each experimental condition was performed in 

quadruplicates. Statistical analyses were performed using one-way ANOVA and the P values 

corresponding to the comparison of siRNA-treated versus control cells are shown at every 

single time point. P values ≤.05 are marked in red. Differences in Cell Index measurements are 

significant after 31 hours of monitoring MIA PaCa-2 cells.  

 

Table S3 

  CAPAN‐2 

Time 
(hours) 

Cell Index  
siC#1  
(n=4) 

Cell Index  
siKMT2D#2 

(n=4) 

P value 
siKMT2D#2 vs 

siC#1 
 

0 

1.556944444 

3.306944444 

4.806944444 

6.556944444 

8.056944444 

9.806944444 

11.55694444 

13.05694444 

0 

‐0.020073 

0.037766 

0.068535 

0.08927 

0.099004 

0.101722 

0.098911 

0.098725 

0 

0.034304 

0.079534 

0.10916 

0.128111 

0.1331 

0.127247 

0.13078 

0.125915 

0 

0.050577 

0.099732 

0.125919 

0.139508 

0.155176 

0.158144 

0.15315 

0.146574 

0 

0.05816 

0.094963 

0.113986 

0.129772 

0.1359 

0.137542 

0.137105 

0.134241 

0 

0.06867 

0.141033 

0.179764 

0.205867 

0.219105 

0.229755 

0.230603 

0.233402 

0 

0.059427 

0.122201 

0.165437 

0.190239 

0.201924 

0.212719 

0.214544 

0.220184 

0 

0.083027 

0.144497 

0.179974 

0.200832 

0.214894 

0.219634 

0.22037 

0.221467 

0 

0.085488 

0.157935 

0.200587 

0.231135 

0.244162 

0.253497 

0.258289 

0.260783 

 

0.05928 

0.00721 

0.00175 

9.12692E‐4 

8.90077E‐4 

5.65592E‐4 

5.14131E‐4 

2.389E‐4 
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14.80694444 

16.30694444 

18.05694444 

19.55694444 

21.30694444 

22.80694444 

24.55694444 

26.05694444 

27.80694444 

29.55694444 

31.05694444 

32.80694444 

34.30694444 

36.05694444 

37.55694444 

39.30694444 

40.80694444 

42.55694444 

44.05694444 

45.80694444 

47.55694444 

49.05694444 

50.80694444 

0.097222 

0.096102 

0.094791 

0.087017 

0.082258 

0.080472 

0.075172 

0.074455 

0.0737 

0.072791 

0.072043 

0.066999 

0.062007 

0.061464 

0.065181 

0.06347 

0.063181 

0.063229 

0.066098 

0.064277 

0.06762 

0.070556 

0.071493 

0.124272 

0.122436 

0.12158 

0.122059 

0.119865 

0.123005 

0.121803 

0.122927 

0.119391 

0.11973 

0.120048 

0.11541 

0.116527 

0.112372 

0.11423 

0.117356 

0.113218 

0.11298 

0.116247 

0.121713 

0.124783 

0.125857 

0.12713 

0.145863 

0.143388 

0.140609 

0.139195 

0.137669 

0.136547 

0.132296 

0.134319 

0.131049 

0.12722 

0.124046 

0.12315 

0.121774 

0.116357 

0.102967 

0.09523 

0.090033 

0.080251 

0.079267 

0.084177 

0.082257 

0.083957 

0.078742 

0.134348 

0.131518 

0.130565 

0.126579 

0.128171 

0.128523 

0.132782 

0.129331 

0.125469 

0.125928 

0.119541 

0.11772 

0.12072 

0.120599 

0.115519 

0.116264 

0.112343 

0.116045 

0.117831 

0.124887 

0.123198 

0.124076 

0.124957 

0.238026 

0.239895 

0.241798 

0.241056 

0.241253 

0.243548 

0.243325 

0.244887 

0.242504 

0.242003 

0.24577 

0.244751 

0.244203 

0.24808 

0.245032 

0.245516 

0.244225 

0.250371 

0.249681 

0.248549 

0.252865 

0.249066 

0.250745 

0.220155 

0.219975 

0.215101 

0.216168 

0.21935 

0.218359 

0.221071 

0.22282 

0.223553 

0.229328 

0.22249 

0.227915 

0.231497 

0.225763 

0.227805 

0.233652 

0.236082 

0.236341 

0.240117 

0.242266 

0.243433 

0.247302 

0.24804 

0.222833 

0.226634 

0.232633 

0.227237 

0.225254 

0.230869 

0.22565 

0.226275 

0.223904 

0.218143 

0.225408 

0.220318 

0.223175 

0.225829 

0.22235 

0.219364 

0.223486 

0.229732 

0.232087 

0.234827 

0.241608 

0.249124 

0.252373 

0.264834 

0.263344 

0.262699 

0.2572 

0.259881 

0.259986 

0.262633 

0.266265 

0.271749 

0.263189 

0.258103 

0.259354 

0.263073 

0.241364 

0.239662 

0.232157 

0.232254 

0.235528 

0.238075 

0.24359 

0.247328 

0.245079 

0.25484 

2.67765E‐4 

1.746E‐4 

1.63212E‐4 

1.79476E‐4 

2.21228E‐4 

2.22074E‐4 

3.19085E‐4 

3.30394E‐4 

3.16723E‐4 

2.28539E‐4 

1.34237E‐4 

1.52409E‐4 

2.01022E‐4 

1.1443E‐4 

4.57436E‐5 

6.4013E‐5 

3.19248E‐5 

3.98296E‐5 

3.97361E‐5 

7.50008E‐5 

5.8002E‐5 

4.609E‐5 

5.28337E‐5 

 

Supplementary Table S3: Xcelligence Cell Index and P values of siKMT2D#2-treated 

versus control CAPAN-2 cells.  

List of Cell Index values derived from the measured impedances and continuously displayed on 

the Xcelligence Software user interface. Each experimental condition was performed in 

quadruplicates. Statistical analyses were performed using one-way ANOVA and the P values 

corresponding to the comparison of siRNA-treated versus control cells are shown at every 
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single time point. P values ≤.05 are marked in red. Differences in Cell Index measurements are 

significant after 3.3 hours of monitoring CAPAN-2 cells.  

 

Table S4 

  MIA PaCa‐2 

Time 
(hours) 

Cell Index  
mock 
(n=3) 

Cell Index  
shKMT2D#2‐21a 

(n=3) 

P value 
shKMT2D#2‐21a vs 

mock 
 

0 

1.64611 

3.39611 

4.89611 

6.64611 

8.14611 

9.89611 

11.39611 

13.14611 

14.64611 

16.39611 

18.14611 

19.64611 

21.39611 

22.89611 

24.64611 

26.14611 

27.89611 

29.64444 

31.14444 

32.89444 

34.39444 

36.14444 

0 

‐0.03548 

0.02795 

0.08816 

0.15481 

0.20299 

0.2414 

0.27765 

0.32252 

0.36765 

0.41964 

0.45588 

0.48118 

0.49712 

0.51328 

0.54207 

0.59431 

0.66012 

0.74236 

0.78123 

0.82113 

0.86096 

0.90486 

0 

‐6.7E‐4 

0.05192 

0.105 

0.16696 

0.20718 

0.24242 

0.27711 

0.31923 

0.36132 

0.3977 

0.42176 

0.43805 

0.46084 

0.47107 

0.50643 

0.56295 

0.62616 

0.68291 

0.73267 

0.78133 

0.81316 

0.85244 

0 

0.04437 

0.11561 

0.17799 

0.25148 

0.29803 

0.3348 

0.37328 

0.41425 

0.46573 

0.5132 

0.5516 

0.57682 

0.59246 

0.61206 

0.65696 

0.69114 

0.7551 

0.82783 

0.88596 

0.9338 

0.96802 

1.01082 

0 

0.02274 

0.18392 

0.27335 

0.35875 

0.40881 

0.45946 

0.51275 

0.57925 

0.63069 

0.67095 

0.69757 

0.71668 

0.76491 

0.82401 

0.92238 

1.00921 

1.1097 

1.1898 

1.26025 

1.32393 

1.38432 

1.46964 

0 

0.03943 

0.17674 

0.25557 

0.32387 

0.36791 

0.41235 

0.45182 

0.51468 

0.56235 

0.6043 

0.62371 

0.64357 

0.67262 

0.73223 

0.82223 

0.90233 

1.01301 

1.11702 

1.19066 

1.26901 

1.32704 

1.41646 

0 

0.06906 

0.21105 

0.29962 

0.3673 

0.41359 

0.45553 

0.50053 

0.56412 

0.60952 

0.65111 

0.67342 

0.68661 

0.72969 

0.78193 

0.879 

0.96789 

1.06958 

1.1598 

1.23467 

1.29878 

1.34736 

1.44576 

 

0.20064 

0.01122 

0.0074 

0.00872 

0.00934 

0.00791 

0.0084 

0.00546 

0.00676 

0.00806 

0.01334 

0.01645 

0.01243 

0.00751 

0.00474 

0.00227 

0.0013 

0.00101 

9.85588E‐4 

7.2956E‐4 

6.35982E‐4 

4.44133E‐4 
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37.64444 

39.39444 

40.89444 

42.64444 

44.39444 

45.89333 

47.64333 

49.14167 

50.88972 

52.38972 

54.13972 

55.88972 

57.38972 

59.13972 

60.63972 

62.38972 

63.88972 

65.63972 

67.13972 

68.88972 

70.63972 

72.13972 

73.88972 

75.38972 

77.13944 

78.63944 

80.38944 

81.88944 

83.63944 

85.38944 

86.88944 

88.63944 

0.93605 

0.98666 

1.04982 

1.10853 

1.16738 

1.21602 

1.26615 

1.31626 

1.37807 

1.43097 

1.50776 

1.61186 

1.67382 

1.76102 

1.83668 

1.92252 

1.98447 

2.081 

2.16031 

2.27924 

2.3875 

2.48343 

2.58672 

2.72494 

2.8011 

2.91401 

3.02859 

3.13508 

3.26149 

3.39014 

3.49607 

3.55179 

0.88429 

0.94622 

0.9958 

1.06787 

1.12633 

1.1799 

1.24707 

1.28497 

1.34948 

1.40787 

1.4887 

1.58677 

1.66723 

1.75566 

1.84181 

1.93019 

2.00046 

2.10635 

2.20805 

2.32252 

2.41904 

2.50893 

2.61139 

2.71189 

2.83126 

2.90089 

3.00459 

3.08395 

3.17539 

3.26267 

3.32432 

3.40723 

1.0517 

1.1091 

1.172 

1.24812 

1.3259 

1.38965 

1.46187 

1.50996 

1.57186 

1.63916 

1.70548 

1.79364 

1.86846 

1.96147 

2.03916 

2.12654 

2.20477 

2.31714 

2.37155 

2.45216 

2.59425 

2.70639 

2.80666 

2.88812 

3.01627 

3.0763 

3.17597 

3.24635 

3.31704 

3.42184 

3.48201 

3.55229 

1.55654 

1.68043 

1.79348 

1.91062 

2.01828 

2.12459 

2.21607 

2.32416 

2.45744 

2.55202 

2.70808 

2.84836 

2.96868 

3.13693 

3.27238 

3.42067 

3.52858 

3.69513 

3.81512 

3.9797 

4.08349 

4.21164 

4.32744 

4.45171 

4.59121 

4.69108 

4.83053 

4.87581 

4.98727 

5.10971 

5.156 

5.20273 

1.52442 

1.66193 

1.78453 

1.96863 

2.11814 

2.24856 

2.3618 

2.48603 

2.59205 

2.71498 

2.85097 

2.98378 

3.13848 

3.29247 

3.39747 

3.51613 

3.63979 

3.75112 

3.85113 

3.95671 

4.03866 

4.11882 

4.22684 

4.32179 

4.37858 

4.42792 

4.48886 

4.53915 

4.6286 

4.70364 

4.74067 

4.78268 

1.54173 

1.6784 

1.81634 

1.96647 

2.1126 

2.21155 

2.33057 

2.44008 

2.58472 

2.70421 

2.89939 

3.06371 

3.19889 

3.29779 

3.41639 

3.55384 

3.66438 

3.79362 

3.88427 

4.00217 

4.14571 

4.21704 

4.2726 

4.37495 

4.4798 

4.56312 

4.5994 

4.64591 

4.68768 

4.74254 

4.76751 

4.80914 

3.166E‐4 

1.80687E‐4 

1.64543E‐4 

1.52504E‐4 

2.20452E‐4 

2.33143E‐4 

2.79254E‐4 

2.53257E‐4 

1.74688E‐4 

2.09778E‐4 

1.54796E‐4 

1.36266E‐4 

1.38547E‐4 

7.90511E‐5 

5.49798E‐5 

4.18829E‐5 

4.71E‐5 

3.91071E‐5 

1.80775E‐5 

6.98761E‐6 

2.22305E‐5 

3.09696E‐5 

2.86289E‐5 

1.90687E‐5 

6.16085E‐5 

7.22673E‐5 

1.61295E‐4 

1.55821E‐4 

2.14344E‐4 

4.15676E‐4 

5.56886E‐4 

5.83157E‐4 
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90.13944 

91.88944 

93.38944 

95.13944 

96.88944 

98.38944 

100.13917 

101.63917 

103.38917 

104.88917 

106.63917 

108.13917 

109.88917 

111.63917 

113.13917 

114.88917 

116.38917 

118.13917 

119.63917 

121.38917 

3.68251 

3.80046 

3.87641 

3.98026 

4.09917 

4.20116 

4.31632 

4.43169 

4.54915 

4.65601 

4.71997 

4.81067 

4.88043 

4.98009 

5.03647 

5.13655 

5.18354 

5.23074 

5.25751 

5.35591 

3.47698 

3.55814 

3.6527 

3.72709 

3.79225 

3.86002 

3.92505 

3.98702 

4.03133 

4.05039 

4.08675 

4.13599 

4.13423 

4.16329 

4.18176 

4.20232 

4.19483 

4.18789 

4.19731 

4.17537 

3.62795 

3.72993 

3.81331 

3.87598 

3.97422 

4.01449 

4.10531 

4.17207 

4.20871 

4.27636 

4.32626 

4.35874 

4.38586 

4.4206 

4.41413 

4.42149 

4.42152 

4.45534 

4.42753 

4.41114 

5.22825 

5.40447 

5.46153 

5.55389 

5.58058 

5.60487 

5.61392 

5.68448 

5.70852 

5.75427 

5.76795 

5.79617 

5.80425 

5.82269 

5.83088 

5.7937 

5.77905 

5.76533 

5.72818 

5.70622 

4.83796 

4.8729 

4.88317 

4.93473 

4.95065 

4.95606 

4.95159 

4.98647 

4.99687 

4.98478 

4.94804 

4.90208 

4.8672 

4.80838 

4.74924 

4.66986 

4.6451 

4.57388 

4.5083 

4.44587 

4.83767 

4.88635 

4.93434 

4.9804 

5.0155 

5.02309 

5.04212 

5.00756 

5.00298 

4.98693 

4.93416 

4.91447 

4.86941 

4.8519 

4.80327 

4.75638 

4.7042 

4.6051 

4.57409 

4.49845 

6.76022E‐4 

0.00199 

0.00261 

0.00365 

0.00498 

0.00689 

0.01001 

0.01735 

0.02571 

0.04245 

0.06472 

0.09709 

0.13465 

0.19337 

0.25046 

0.34815 

0.40361 

0.51611 

0.57714 

0.68849 

 

 

Supplementary Table S4: Xcelligence Cell Index and P values of shKMT2D#2-21a versus 

mock MIA PaCa-2 cells. 

List of Cell Index values derived from the measured impedances and continuously displayed on 

the Xcelligence Software user interface. Each experimental condition was performed in 

triplicates. Statistical analyses were performed using one-way ANOVA and the P values 

corresponding to the comparison of shRNA-stably transfected versus control cells are shown at 

every single time point.  P values ≤0.05 are marked in red. Differences in Cell Index 

measurements are significant after 3.3 hours of monitoring. 
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Table S5 

  CAPAN‐2 

Time (hours) 
Cell Index  
mock  
(n=4) 

Cell Index  
shKMT2D#2‐21a 

(n=4) 

P value 
shKMT2D#2‐
21a vs mock 

 

0 

1.64611 

3.39611 

4.89611 

6.64611 

8.14611 

9.89611 

11.39611 

13.14611 

14.64611 

16.39611 

18.14611 

19.64611 

21.39611 

22.89611 

24.64611 

26.14611 

27.89611 

29.64444 

31.14444 

32.89444 

34.39444 

36.14444 

37.64444 

39.39444 

40.89444 

42.64444 

0 

0.01462 

0.07544 

0.11267 

0.13282 

0.14139 

0.1525 

0.15252 

0.15796 

0.15662 

0.15975 

0.15871 

0.15639 

0.15989 

0.16406 

0.1619 

0.1678 

0.16923 

0.17416 

0.1824 

0.18152 

0.18649 

0.18978 

0.19512 

0.19763 

0.19881 

0.20051 

0 

0.01218 

0.05766 

0.08142 

0.09975 

0.10637 

0.10688 

0.10846 

0.10767 

0.10242 

0.09829 

0.09698 

0.09199 

0.09242 

0.08835 

0.08548 

0.0876 

0.08459 

0.08085 

0.07759 

0.07712 

0.07346 

0.07419 

0.06979 

0.06798 

0.06364 

0.0574 

0 

0.03884 

0.07975 

0.10833 

0.13087 

0.13721 

0.1374 

0.13751 

0.13622 

0.13536 

0.13219 

0.13278 

0.13041 

0.13139 

0.13004 

0.12986 

0.12719 

0.12604 

0.12452 

0.126 

0.12331 

0.11996 

0.12101 

0.11535 

0.10924 

0.11474 

0.10941 

0 

0.06201 

0.10362 

0.13384 

0.15106 

0.15648 

0.1588 

0.15606 

0.15512 

0.15155 

0.14733 

0.14415 

0.1444 

0.13816 

0.13723 

0.13359 

0.1307 

0.13104 

0.12672 

0.12553 

0.12159 

0.11769 

0.11213 

0.11125 

0.10578 

0.09785 

0.09803 

0 

0.07853 

0.1246 

0.15458 

0.17986 

0.19189 

0.20485 

0.21631 

0.22899 

0.23498 

0.24868 

0.25905 

0.27136 

0.28585 

0.29695 

0.30964 

0.32135 

0.3342 

0.34964 

0.35925 

0.36834 

0.37439 

0.37185 

0.38244 

0.39243 

0.39526 

0.40709 

0 

0.04418 

0.08982 

0.11595 

0.13594 

0.14788 

0.15644 

0.16728 

0.1757 

0.18659 

0.19501 

0.21019 

0.22274 

0.23164 

0.24713 

0.25627 

0.27093 

0.28139 

0.29744 

0.3033 

0.31755 

0.32594 

0.33697 

0.35255 

0.36354 

0.37742 

0.39498 

0 

0.02288 

0.07047 

0.10411 

0.12981 

0.13682 

0.14623 

0.15531 

0.16183 

0.17484 

0.18465 

0.18786 

0.1972 

0.1939 

0.20966 

0.21183 

0.23042 

0.2374 

0.24991 

0.25879 

0.2705 

0.27598 

0.28399 

0.29787 

0.30484 

0.3182 

0.33898 

0 

0.03539 

0.0966 

0.13383 

0.1606 

0.17371 

0.18281 

0.19419 

0.20175 

0.20937 

0.21619 

0.22294 

0.23074 

0.23603 

0.23996 

0.25081 

0.2566 

0.26743 

0.27925 

0.28762 

0.29826 

0.30492 

0.3099 

0.32168 

0.32708 

0.33605 

0.34726 

 

0.45515 

0.31017 

0.2854 

0.19468 

0.14612 

0.10382 

0.04309 

0.03085 

0.01139 

0.00748 

0.00473 

0.00301 

0.00402 

0.00258 

0.0023 

0.00136 

0.00124 

0.00104 

0.00116 

7.34904E‐4 

7.57403E‐4 

5.85979E‐4 

5.18973E‐4 

5.16712E‐4 

4.11666E‐4 

3.17093E‐4 
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44.39444 

45.89333 

47.64333 

49.14167 

50.88972 

52.38972 

54.13972 

55.88972 

57.38972 

59.13972 

60.63972 

62.38972 

63.88972 

65.63972 

67.13972 

68.88972 

70.63972 

72.13972 

73.88972 

75.38972 

77.13944 

78.63944 

80.38944 

81.88944 

83.63944 

85.38944 

86.88944 

88.63944 

90.13944 

91.88944 

93.38944 

95.13944 

0.20842 

0.21108 

0.21688 

0.22108 

0.23155 

0.23578 

0.24363 

0.253 

0.25673 

0.26142 

0.26829 

0.27364 

0.27408 

0.28038 

0.28963 

0.29532 

0.29942 

0.30537 

0.31327 

0.3182 

0.33027 

0.33924 

0.3487 

0.35949 

0.36418 

0.37339 

0.38011 

0.39188 

0.3994 

0.4124 

0.41764 

0.42643 

0.05262 

0.03697 

0.03923 

0.04193 

0.04425 

0.04409 

0.04808 

0.05448 

0.05762 

0.06335 

0.06477 

0.06557 

0.07054 

0.07291 

0.07739 

0.07692 

0.08279 

0.08631 

0.09277 

0.08969 

0.09882 

0.10003 

0.10577 

0.11137 

0.11618 

0.12079 

0.12661 

0.13656 

0.14292 

0.14896 

0.15343 

0.16578 

0.10969 

0.11015 

0.11628 

0.11735 

0.11829 

0.12151 

0.12219 

0.12579 

0.13062 

0.13304 

0.13566 

0.13821 

0.14284 

0.14651 

0.14796 

0.15511 

0.15458 

0.1581 

0.16368 

0.16533 

0.16565 

0.16911 

0.17359 

0.18091 

0.18941 

0.19537 

0.19735 

0.20597 

0.21497 

0.22115 

0.2324 

0.23832 

0.09621 

0.09583 

0.09659 

0.09839 

0.09668 

0.09185 

0.08561 

0.08556 

0.08629 

0.08675 

0.09055 

0.089 

0.0914 

0.09407 

0.09153 

0.08452 

0.08815 

0.08772 

0.08601 

0.08903 

0.09587 

0.09508 

0.0987 

0.09913 

0.10619 

0.10567 

0.10701 

0.11024 

0.10799 

0.11206 

0.11258 

0.11547 

0.42697 

0.44859 

0.46535 

0.48161 

0.50937 

0.52924 

0.54634 

0.57381 

0.58611 

0.60869 

0.62504 

0.64896 

0.67956 

0.7024 

0.72935 

0.75266 

0.7841 

0.80715 

0.83972 

0.85848 

0.89576 

0.94837 

1.00222 

1.03302 

1.06645 

1.11719 

1.1595 

1.2158 

1.28016 

1.35973 

1.42202 

1.52347 

0.41296 

0.42364 

0.44283 

0.47117 

0.48388 

0.49896 

0.5207 

0.54568 

0.56827 

0.60007 

0.61133 

0.63632 

0.66286 

0.68778 

0.71003 

0.72862 

0.76832 

0.79405 

0.81829 

0.85382 

0.90812 

0.94157 

0.98485 

1.03145 

1.07785 

1.12588 

1.18502 

1.23839 

1.3008 

1.35436 

1.43345 

1.56719 

0.35257 

0.36593 

0.39169 

0.40379 

0.42265 

0.44429 

0.45773 

0.46975 

0.49624 

0.50725 

0.53163 

0.54708 

0.55842 

0.57252 

0.58763 

0.60422 

0.63173 

0.65885 

0.68513 

0.71023 

0.73604 

0.77601 

0.80443 

0.84508 

0.86758 

0.89975 

0.92108 

0.96176 

0.99606 

1.02401 

1.06019 

1.07862 

0.35588 

0.36544 

0.3835 

0.40015 

0.41374 

0.42949 

0.4489 

0.46185 

0.48122 

0.49634 

0.51868 

0.53735 

0.54902 

0.56675 

0.58466 

0.60104 

0.62832 

0.64177 

0.67534 

0.7047 

0.72969 

0.76276 

0.79951 

0.82332 

0.8391 

0.8771 

0.90369 

0.94011 

0.97683 

1.01358 

1.0492 

1.09339 

3.92894E‐4 

4.67138E‐4 

3.54637E‐4 

3.13406E‐4 

3.36406E‐4 

2.90154E‐4 

2.73627E‐4 

3.10678E‐4 

2.27898E‐4 

2.2984E‐4 

1.79323E‐4 

1.76477E‐4 

1.77675E‐4 

1.79125E‐4 

1.92732E‐4 

1.99467E‐4 

1.65234E‐4 

1.55946E‐4 

1.3085E‐4 

1.09467E‐4 

1.22138E‐4 

1.10465E‐4 

1.11257E‐4 

1.06542E‐4 

1.17714E‐4 

1.16753E‐4 

1.36251E‐4 

1.36401E‐4 

1.51674E‐4 

1.84004E‐4 

2.09515E‐4 

3.56668E‐4 
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96.88944 

98.38944 

100.13917 

101.63917 

103.38917 

104.88917 

106.63917 

108.13917 

109.88917 

111.63917 

113.13917 

114.88917 

116.38917 

118.13917 

119.63917 

121.38917 

0.43567 

0.44724 

0.46331 

0.46731 

0.48137 

0.49534 

0.51044 

0.52609 

0.53772 

0.54959 

0.56386 

0.57123 

0.58829 

0.60761 

0.62744 

0.638784 

0.17158 

0.17464 

0.17956 

0.18361 

0.18737 

0.19351 

0.19558 

0.21009 

0.21542 

0.22733 

0.23495 

0.24506 

0.25 

0.2572 

0.26197 

0.27081 

0.24716 

0.25659 

0.26242 

0.27419 

0.28146 

0.29001 

0.29743 

0.3009 

0.31296 

0.32882 

0.33118 

0.34073 

0.35437 

0.36414 

0.36525 

0.376880 

0.11923 

0.12718 

0.13036 

0.1322 

0.13378 

0.13492 

0.13514 

0.1425 

0.14786 

0.14885 

0.15368 

0.15369 

0.16194 

0.16934 

0.17169 

0.177430 

1.60117 

1.68784 

1.77026 

1.86374 

1.95985 

2.07408 

2.18489 

2.32248 

2.45081 

2.67416 

2.86434 

3.10717 

3.29853 

3.511 

3.77049 

4.07119 

1.63223 

1.75962 

1.84637 

1.9746 

2.08392 

2.28446 

2.39506 

2.58844 

2.78011 

2.93264 

3.1599 

3.39293 

3.66115 

4.04172 

4.463 

5.0249788 

1.12655 

1.18409 

1.23422 

1.27434 

1.32145 

1.37379 

1.40685 

1.46406 

1.51131 

1.56531 

1.62501 

1.70519 

1.7787 

1.85226 

1.9252 

2.02605 

1.1347 

1.18649 

1.22194 

1.27042 

1.31949 

1.37304 

1.41617 

1.47154 

1.51776 

1.60026 

1.65958 

1.75151 

1.82755 

1.90569 

2.01165 

2.09975 

3.58733E‐4 

4.1616E‐4 

4.72084E‐4 

5.86156E‐4 

6.71452E‐4 

9.59862E‐4 

0.00115 

0.00149 

0.00193 

0.00217 

0.00272 

0.00306 

0.00361 

0.00469 

0.00587 

0.00781 

 

Supplementary Table S5: Xcelligence Cell Index and P values of shKMT2D#2-21a versus 

mock CAPAN-2 cells.  

List of Cell Index values derived from the measured impedances and continuously displayed on 

the Xcelligence Software user interface. Each experimental condition was performed in 

triplicates. Statistical analyses were performed using one-way ANOVA and the P values 

corresponding to the comparison of shRNA-stably transfected versus control cells are shown at 

every single time point.  P values ≤0.05 are marked in red. Differences in Cell Index 

measurements are significant after 11 hours of monitoring. 
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Table S6 

Gene symbols Mean difference P value        q value Probes 

SETD3 
KMT2D 
KMT2D 
KDM3A 
KDM2B 
SETDB2 

0.264457 
0.293902 
0.276747 
0.254105 
-0.26654 
-0.31333 

.0000027 
.000394 

.0000201 
.000000979 
.0000164 
.0000133 

.000353114 

.003574961 

.000762928 

.000258094 
.000694 
.002972 

cg16694837 
cg13007988 
cg00522588 
cg01878308 
cg15234492 
cg05743713 

 

Supplementary Table S6: Differential methylation of chromatin regulators in 

pancreatic cancer.  

Table of standardized (Z-scores) expression of the corresponding KMTs and KDMs in 

pancreatic cancer as well as adjacent normal tissues, as assessed by the Infinium 

Human Methylation 450 Bead ChIP Array. Wilcoxon rank-sum tests were conducted to 

compare methylation array data between pancreatic cancer patients and healthy 

controls. Genes shown are up- or down-regulated ≥1.5 fold relatively to normal samples 

and with statistical significance P≤0.001 

 

Table S7 

(i) 

Chr Start End Ref Alt 
Func. 

refGene 

ExonicFunc. 

refGene 
AAChange.refGene 

12 49421179 49421179 G C intronic na na 

12 49422795 49422795 G A intronic na na 

12 49427919 49427919 T C exonic synonymous 
SNV KMT2D:NM_003482:exon38:c.A10671G:p.P3557P 

12 49439659 49439659 C T intronic na na 

12 49445447 49445447 T A exonic synonymous 
SNV KMT2D:NM_003482:exon10:c.A2019T:p.P673P 
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12 49445536 49445536 T G exonic nonsynonymous 
SNV KMT2D:NM_003482:exon10:c.A1930C:p.M644L 

12 49445540 49445540 T A exonic synonymous 
SNV KMT2D:NM_003482:exon10:c.A1926T:p.S642S 

12 49447819 49447819 T C exonic synonymous 
SNV KMT2D:NM_003482:exon5:c.A615G:p.L205L 

 

(ii) 

Chr Start End Ref Alt 
Func. 

refGene 

ExonicFunc. 

refGene 
AAChange.refGene 

12 49413208 49413208 - A UTR3 na na 

12 49415026 49415026 G A UTR3 na na 

12 49416048 49416048 C - intronic na na 

12 49419677 49419677 G C intronic na na 

12 49421179 49421179 G C intronic na na 

12 49422094 49422094 A G intronic na na 

12 49424616 49424616 G A intronic na na 

12 49424878 49424881 TCT
G - intronic na na 

12 49425978 49425978 T C exonic synonymous 
SNV KMT2D:NM_003482:exon39:c.A12510G:p.P4170P 

12 49427652 49427652 C T exonic synonymous 
SNV KMT2D:NM_003482:exon39:c.G10836A:p.Q3612Q 

12 49434074 49434074 C A exonic synonymous 
SNV KMT2D:NM_003482:exon31:c.G7479T:p.G2493G 

12 49436724 49436724 A G intronic na na 

12 49439521 49439521 A G intronic na na 

12 49439659 49439659 C T intronic na na 

12 49441382 49441382 T - intronic na na 

12 49442359 49442359 - A intronic na na 

12 49442813 49442813 T C intronic na na 

12 49444545 49444545 G A exonic synonymous 
SNV KMT2D:NM_003482:exon11:c.C2826T:p.I942I 
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12 49448881 49448881 T G intronic na na 

 

Table S7: KMT2D mutational status. 

Sequence alterations in KMT2D gene, as assessed by Whole Exome Sequencng, in (i) 

MIA PaCa-2 and (ii) CAPAN-2 cell lines. Chr, Chromosome number; Start, Start 

position; End, End position; Ref, Reference base(s); Alt, Alternate non-reference alleles 

called on at least one of the samples; Func.refGene, Regions (e.g., exonic, intronic, 

non-coding RNA)) that one variant hits; ExonicFunc.refGene, Exonic variant function, 

e.g., nonsynonymous, synonymous, frameshift insertion; AAChange.refGene, Amino 

acid change. For example, KMT2D : NM_003482:exon38:c.A10671G:p.P3557P stands 

for gene name, Known RefSeq accession, region, cDNA level change, protein level 

change. 

 

Table S8 

 (i) 

Chr Start End Ref Alt 
Func. 

refGene 

ExonicFunc. 

refGene 
AAChange.refGene 

12 8072008 8072008 T C UTR3 na na 

12 8073496 8073496 T - UTR3 na na 

12 8074192 8074192 G A exonic synonymous 
SNV SLC2A3:NM_006931:exon10:c.C1308T:p.T436T 

12 8075117 8075117 A G intronic na na 

12 8075286 8075286 C T intronic na na 

12 8083541 8083541 C T intronic na na 

12 8085547 8085547 T C intronic na na 

12 8086083 8086083 C A intronic na na 
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 8088227 8088227 T C intronic na na 

 8088766 8088766 T C UTR5 na na 

 

(ii) 

Chr Start End Ref Alt 
Func. 

refGene 

ExonicFunc. 

refGene 
AAChange.refGene 

12 8072562 8072562 A G UTR3 na na 

12 8073496 8073496 T - UTR3 na na 

12 8074192 8074192 G A exonic synonymous 
SNV SLC2A3:NM_006931:exon10:c.C1308T:p.T436T 

12 8075117 8075117 A G intronic na na 

12 8075286 8075286 C T intronic na na 

12 8086062 8086062 G C intronic na na 

12 8088766 8088766 T C UTR5 na na 

 

Table S8: SLC2A3 mutational status. 

Sequence alterations in SLC2A3 gene, as assessed by Whole Exome Sequencng, in (i) 

MIA PaCa-2 and (ii) CAPAN-2 cell lines.  

 

Table S9 

  MIA PaCa‐2 

Time (hours) 
Cell Index  

shKMT2D#2‐21a+siC#1  
(n=4) 

Cell Index  
shKMT2D#2‐21a+siSLC2A3  

(n=4) 

P value 
shKMT2D#2‐
21a+siSLC2A3 

vs 
shKMT2D#2‐
21a+siC#1 

 

0 

1.64611 

3.39611 

0 

‐0.09461 

‐0.07183 

0 

‐0.10544 

‐0.08472 

0 

‐0.10934 

‐0.08991 

0 

‐0.09085 

‐0.06829 

0 

‐0.06418 

‐0.04211 

0 

‐0.08382 

‐0.06424 

0 

‐0.1064 

‐0.08378 

0 

‐0.09298 

‐0.0497 

 

0.2297 

0.12519 
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4.89611 

6.64611 

8.14611 

9.89611 

11.39611 

13.14611 

14.64611 

16.39611 

18.14611 

19.64611 

21.39611 

22.89611 

24.64611 

26.14611 

27.89611 

29.64444 

31.14444 

32.89444 

34.39444 

36.14444 

37.64444 

39.39444 

40.89444 

42.64444 

44.39444 

45.89333 

47.64333 

49.14167 

50.88972 

52.38972 

54.13972 

55.88972 

‐0.03959 

‐0.00333 

0.03037 

0.06093 

0.08987 

0.11748 

0.14544 

0.17055 

0.19574 

0.21736 

0.24085 

0.26035 

0.28008 

0.29911 

0.32114 

0.34657 

0.35513 

0.38004 

0.42083 

0.451 

0.49111 

0.51728 

0.5545 

0.59323 

0.6212 

0.65597 

0.70713 

0.75288 

0.82426 

0.87652 

0.94527 

0.98306 

‐0.05402 

‐0.02005 

0.01308 

0.03873 

0.06699 

0.09022 

0.11846 

0.14461 

0.17415 

0.19735 

0.21538 

0.23619 

0.2552 

0.26855 

0.28338 

0.30347 

0.32492 

0.34996 

0.38988 

0.42665 

0.46056 

0.4972 

0.52714 

0.54773 

0.58563 

0.62375 

0.67223 

0.71725 

0.77215 

0.83089 

0.89607 

0.96064 

‐0.05856 

‐0.02692 

0.00741 

0.03554 

0.06234 

0.08578 

0.11708 

0.13905 

0.1595 

0.17909 

0.20297 

0.21879 

0.23872 

0.2621 

0.27851 

0.2998 

0.3265 

0.34583 

0.37766 

0.41102 

0.45351 

0.4868 

0.51567 

0.54368 

0.5737 

0.60767 

0.64871 

0.69244 

0.75003 

0.79804 

0.87458 

0.93668 

‐0.0265 

0.00252 

0.02951 

0.05915 

0.08699 

0.1108 

0.13531 

0.15488 

0.18154 

0.20363 

0.22107 

0.23155 

0.24416 

0.25453 

0.2651 

0.27632 

0.28211 

0.30357 

0.32976 

0.34823 

0.38222 

0.40949 

0.43311 

0.44909 

0.4755 

0.48826 

0.51336 

0.53825 

0.57887 

0.61428 

0.66318 

0.70036 

‐0.01929 

‐0.00723 

0.00352 

0.01221 

0.02703 

0.03469 

0.04826 

0.06123 

0.07805 

0.09044 

0.1039 

0.10422 

0.11326 

0.12754 

0.14007 

0.15044 

0.16899 

0.18761 

0.21553 

0.23936 

0.27224 

0.29648 

0.31419 

0.32836 

0.34719 

0.3702 

0.39095 

0.41959 

0.4602 

0.48923 

0.5208 

0.5501 

‐0.04226 

‐0.02847 

‐0.01821 

‐0.00894 

0.00411 

0.0146 

0.02964 

0.04342 

0.05888 

0.07096 

0.08493 

0.09528 

0.10717 

0.11606 

0.12484 

0.13389 

0.1474 

0.16214 

0.16931 

0.18943 

0.21294 

0.23014 

0.24799 

0.26515 

0.28024 

0.28844 

0.2897 

0.31031 

0.33434 

0.35649 

0.38831 

0.41436 

‐0.05887 

‐0.04887 

‐0.03962 

‐0.02679 

‐0.0171 

‐0.00307 

0.0146 

0.03029 

0.04607 

0.05506 

0.06319 

0.07271 

0.08278 

0.09111 

0.09979 

0.11386 

0.13319 

0.15399 

0.17833 

0.19445 

0.21425 

0.22787 

0.24713 

0.25549 

0.27408 

0.29087 

0.31313 

0.33353 

0.36341 

0.38867 

0.41366 

0.42933 

‐0.01414 

0.00368 

0.0122 

0.02 

0.03304 

0.04192 

0.05787 

0.07208 

0.08932 

0.10093 

0.11479 

0.12445 

0.13412 

0.14491 

0.15369 

0.1615 

0.17644 

0.18929 

0.20924 

0.23121 

0.25569 

0.27045 

0.29207 

0.30506 

0.31986 

0.3374 

0.36012 

0.38414 

0.41361 

0.44307 

0.4755 

0.49565 

0.41835 

0.5636 

0.05644 

0.00747 

0.00291 

8.19E‐04 

2.46E‐04 

1.29E‐04 

1.09E‐04 

8.85E‐05 

8.77E‐05 

5.91E‐05 

4.69E‐05 

5.39E‐05 

8.00E‐05 

8.82E‐05 

9.34E‐05 

7.82E‐05 

1.50E‐04 

2.47E‐04 

2.74E‐04 

2.56E‐04 

2.92E‐04 

4.09E‐04 

3.47E‐04 

6.08E‐04 

8.35E‐04 

0.00108 

0.00133 

0.0014 

0.00124 

0.00114 
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57.38972 

59.13972 

60.63972 

62.38972 

63.88972 

65.63972 

67.13972 

68.88972 

70.63972 

72.13972 

73.88972 

75.38972 

77.13944 

78.63944 

80.38944 

81.88944 

83.63944 

85.38944 

86.88944 

88.63944 

90.13944 

91.88944 

93.38944 

95.13944 

96.88944 

1.06 

1.12301 

1.20626 

1.28918 

1.37471 

1.44241 

1.54195 

1.62172 

1.72848 

1.80786 

1.88601 

1.9323 

2.00516 

2.0589 

2.1331 

2.1557 

2.19256 

2.23593 

2.2729 

2.27382 

2.27634 

2.26027 

2.22563 

2.1836 

2.13645 

1.03367 

1.09276 

1.14633 

1.20455 

1.28074 

1.35446 

1.44198 

1.51839 

1.62262 

1.69168 

1.77459 

1.84716 

1.93677 

1.98732 

2.01494 

2.07281 

2.13124 

2.17164 

2.1846 

2.20528 

2.21071 

2.19989 

2.17577 

2.15322 

2.12463 

1.00026 

1.07692 

1.13268 

1.18868 

1.27408 

1.32066 

1.41084 

1.47243 

1.55557 

1.62729 

1.70508 

1.77276 

1.84752 

1.91977 

2.02523 

2.05688 

2.05782 

2.10071 

2.13259 

2.13942 

2.12413 

2.13127 

2.08407 

2.07722 

1.99197 

0.74032 

0.7769 

0.81675 

0.84646 

0.89532 

0.92819 

0.97504 

1.03179 

1.0837 

1.13608 

1.18451 

1.23341 

1.27405 

1.31567 

1.36859 

1.41857 

1.47013 

1.5153 

1.577 

1.61148 

1.66209 

1.70817 

1.74883 

1.77086 

1.77793 

0.58465 

0.60392 

0.63557 

0.65848 

0.69283 

0.72384 

0.76773 

0.80514 

0.85393 

0.89613 

0.93812 

0.97532 

1.02062 

1.05548 

1.08688 

1.11514 

1.16515 

1.19504 

1.23163 

1.26288 

1.30815 

1.34063 

1.3773 

1.38817 

1.42416 

0.43986 

0.46201 

0.49094 

0.50778 

0.53255 

0.5516 

0.58073 

0.6037 

0.6376 

0.66294 

0.70083 

0.73422 

0.77242 

0.80312 

0.83444 

0.85874 

0.89392 

0.9209 

0.96151 

0.99543 

1.02607 

1.04828 

1.07453 

1.09131 

1.12489 

0.44855 

0.46392 

0.48428 

0.50738 

0.53213 

0.55807 

0.59579 

0.62269 

0.65647 

0.68323 

0.71112 

0.73653 

0.75711 

0.77064 

0.80255 

0.822 

0.85701 

0.88714 

0.92578 

0.95666 

0.99548 

1.02661 

1.05412 

1.07173 

1.09436 

0.51596 

0.53602 

0.56445 

0.58652 

0.61546 

0.64672 

0.68441 

0.7066 

0.7417 

0.77687 

0.80651 

0.83511 

0.87031 

0.8978 

0.93638 

0.96617 

1.00212 

1.03901 

1.06566 

1.09706 

1.12739 

1.16042 

1.19905 

1.22476 

1.26069 

0.00128 

0.00124 

0.00136 

0.0016 

0.00162 

0.00184 

0.0021 

0.0019 

0.00213 

0.0021 

0.00213 

0.00196 

0.00217 

0.00211 

0.00197 

0.00168 

0.00158 

0.00147 

0.00116 

0.00105 

8.67E‐04 

6.55E‐04 

5.11E‐04 

3.82E‐04 

4.36E‐04 

 

Supplementary Table S9: Xcelligence Cell Index and P values of shKMT2D#2-

21a+siSLC2A3 versus shKMT2D#2-21a+siC#1 MIA PaCa-2 cells.  

List of Cell Index values derived from the measured impedances and continuously displayed on 

the Xcelligence Software user interface. Each experimental condition was performed in 

triplicates. Statistical analyses were performed using one-way ANOVA and the P values 
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corresponding to the comparison of siRNA- transfected versus control cells are shown at every 

single time point. P values ≤.05 are marked in red. Differences in Cell Index measurements are 

significant after 9.9 hours of monitoring. 

 

Table S10 

  CAPAN‐2 

Time (hours) 
Cell Index  

shKMT2D#2‐21a+siC#1  
(n=4) 

Cell Index  
shKMT2D#2‐21a+siSLC2A3  

(n=4) 

P value 
shKMT2D#2‐
21a+siSLC2A3 

vs 
shKMT2D#2‐
21a+siC#1 

 

0 

1.64611 

3.39611 

4.89611 

6.64611 

8.14611 

9.89611 

11.39611 

13.14611 

14.64611 

16.39611 

18.14611 

19.64611 

21.39611 

22.89611 

24.64611 

26.14611 

27.89611 

29.64444 

31.14444 

32.89444 

0 

‐0.00518 

0.04612 

0.08429 

0.09141 

0.10227 

0.10822 

0.11602 

0.12673 

0.13734 

0.13679 

0.13963 

0.13908 

0.15199 

0.16439 

0.17178 

0.18233 

0.19079 

0.19871 

0.20416 

0.21547 

0 

0.02887 

0.07247 

0.10152 

0.12081 

0.13077 

0.14479 

0.14908 

0.15749 

0.16688 

0.1788 

0.18715 

0.20014 

0.20827 

0.22046 

0.22879 

0.24194 

0.25002 

0.26096 

0.26983 

0.27794 

0 

0.02781 

0.03966 

0.05783 

0.07221 

0.08522 

0.10014 

0.10879 

0.11432 

0.12238 

0.12986 

0.13867 

0.15055 

0.16008 

0.16757 

0.17618 

0.18778 

0.19631 

0.20498 

0.20815 

0.21468 

0 

0.05786 

0.09728 

0.13086 

0.15163 

0.16305 

0.17095 

0.18075 

0.19297 

0.20425 

0.21527 

0.22552 

0.24238 

0.25841 

0.26948 

0.27906 

0.28877 

0.29901 

0.31507 

0.32568 

0.33238 

0 

0.0328 

0.12267 

0.1671 

0.18629 

0.19681 

0.20304 

0.20815 

0.20311 

0.20318 

0.20663 

0.20577 

0.20772 

0.21072 

0.20681 

0.21022 

0.20975 

0.21337 

0.21382 

0.2169 

0.21841 

0 

0.05089 

0.11334 

0.14826 

0.1777 

0.19102 

0.19155 

0.19342 

0.19383 

0.1959 

0.19367 

0.19182 

0.18509 

0.18474 

0.18091 

0.17862 

0.17247 

0.16567 

0.16072 

0.15077 

0.14868 

0 

0.05253 

0.1014 

0.12715 

0.14465 

0.15491 

0.15909 

0.15649 

0.15725 

0.16033 

0.16094 

0.15731 

0.15691 

0.15826 

0.15888 

0.15943 

0.16625 

0.16833 

0.16708 

0.17228 

0.17111 

0 

0.08391 

0.14091 

0.16902 

0.19019 

0.19491 

0.20452 

0.20683 

0.20882 

0.20762 

0.20704 

0.21143 

0.21236 

0.21277 

0.2217 

0.22131 

0.22506 

0.22944 

0.22533 

0.22927 

0.22952 

 

0.14817 

0.01182 

0.01723 

0.01749 

0.0175 

0.0243 

0.04243 

0.08766 

0.15637 

0.28 

0.46563 

0.79081 

0.91564 

0.65516 

0.4854 

0.31264 

0.23377 

0.14486 

0.13198 

0.09304 
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34.39444 

36.14444 

37.64444 

39.39444 

40.89444 

42.64444 

44.39444 

45.89333 

47.64333 

49.14167 

50.88972 

52.38972 

54.13972 

55.88972 

57.38972 

59.13972 

60.63972 

62.38972 

63.88972 

65.63972 

67.13972 

68.88972 

70.63972 

72.13972 

73.88972 

75.38972 

77.13944 

78.63944 

80.38944 

81.88944 

83.63944 

85.38944 

0.2292 

0.23987 

0.25174 

0.25973 

0.27946 

0.29606 

0.30998 

0.32379 

0.34235 

0.36082 

0.37941 

0.39413 

0.41497 

0.43311 

0.45302 

0.46446 

0.47616 

0.49577 

0.50828 

0.5195 

0.53669 

0.5662 

0.584 

0.59859 

0.61695 

0.64572 

0.67032 

0.70091 

0.719 

0.73772 

0.76381 

0.79156 

0.2868 

0.29629 

0.31045 

0.3197 

0.33161 

0.34571 

0.35912 

0.36613 

0.38699 

0.39765 

0.42018 

0.41995 

0.43158 

0.44867 

0.47498 

0.49226 

0.50906 

0.53169 

0.54829 

0.56537 

0.58838 

0.61035 

0.62813 

0.65662 

0.68457 

0.71715 

0.75109 

0.77414 

0.817 

0.84741 

0.88565 

0.92192 

0.22262 

0.23187 

0.24004 

0.24715 

0.25708 

0.26887 

0.28344 

0.29789 

0.31054 

0.32663 

0.34334 

0.36094 

0.37869 

0.39118 

0.41281 

0.4216 

0.44211 

0.46098 

0.47664 

0.48394 

0.49631 

0.51694 

0.54239 

0.56239 

0.59003 

0.62019 

0.64926 

0.68272 

0.71987 

0.76302 

0.79464 

0.84333 

0.32484 

0.32977 

0.33863 

0.3491 

0.36537 

0.37698 

0.39855 

0.40662 

0.42459 

0.44115 

0.46218 

0.48011 

0.49187 

0.50838 

0.53264 

0.54882 

0.5688 

0.59144 

0.60875 

0.63331 

0.66112 

0.69972 

0.73745 

0.74433 

0.79462 

0.82155 

0.87338 

0.91828 

0.96488 

0.99968 

1.03528 

1.08365 

0.22026 

0.21612 

0.21891 

0.21942 

0.21993 

0.22579 

0.22584 

0.23146 

0.23412 

0.23574 

0.2378 

0.24189 

0.24582 

0.24916 

0.25755 

0.26464 

0.26744 

0.27397 

0.27296 

0.27788 

0.2775 

0.28775 

0.29622 

0.30039 

0.31094 

0.31558 

0.32503 

0.33496 

0.34224 

0.35463 

0.36315 

0.37281 

0.155 

0.153 

0.14798 

0.14642 

0.14594 

0.14306 

0.14444 

0.14379 

0.14304 

0.14884 

0.14949 

0.15193 

0.14865 

0.15321 

0.15661 

0.15728 

0.15994 

0.15731 

0.15572 

0.15846 

0.1593 

0.15971 

0.16154 

0.1621 

0.16276 

0.16979 

0.16878 

0.17422 

0.1776 

0.17843 

0.18018 

0.18552 

0.17275 

0.17661 

0.16968 

0.17331 

0.17611 

0.17781 

0.1766 

0.1792 

0.17697 

0.18105 

0.18381 

0.18888 

0.19262 

0.19742 

0.19852 

0.20195 

0.20132 

0.20344 

0.20593 

0.21138 

0.21224 

0.21376 

0.21927 

0.22218 

0.22757 

0.22811 

0.22842 

0.23751 

0.24023 

0.24233 

0.2539 

0.25962 

0.22971 

0.2296 

0.23424 

0.23079 

0.23741 

0.23661 

0.24021 

0.2435 

0.2435 

0.24735 

0.25057 

0.25398 

0.25755 

0.2592 

0.2666 

0.26656 

0.27022 

0.27539 

0.27813 

0.28111 

0.28775 

0.28993 

0.29396 

0.29927 

0.29996 

0.30751 

0.30924 

0.31654 

0.32514 

0.33096 

0.33904 

0.34019 

0.05689 

0.03314 

0.02475 

0.01765 

0.01242 

0.00828 

0.00591 

0.00422 

0.00293 

0.00187 

0.00136 

0.00104 

7.32891E‐4 

5.46944E‐4 

4.56875E‐4 

4.56939E‐4 

3.60677E‐4 

3.3748E‐4 

2.84032E‐4 

3.37041E‐4 

3.56313E‐4 

3.59497E‐4 

3.72348E‐4 

2.69419E‐4 

3.21261E‐4 

2.27107E‐4 

2.60778E‐4 

2.47164E‐4 

2.55432E‐4 

2.3224E‐4 

2.13786E‐4 

1.86516E‐4 
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86.88944 

88.63944 

90.13944 

91.88944 

93.38944 

95.13944 

96.88944 

0.82089 

0.86111 

0.88858 

0.92279 

0.94733 

0.98508 

1.01497 

0.95469 

0.98606 

1.02288 

1.07905 

1.12063 

1.15215 

1.19294 

0.89068 

0.93542 

0.98232 

1.0497 

1.10369 

1.17704 

1.25461 

1.14278 

1.22052 

1.2608 

1.32095 

1.37082 

1.46032 

1.51927 

0.3834 

0.39078 

0.40177 

0.40469 

0.41868 

0.43141 

0.44505 

0.18351 

0.19116 

0.19443 

0.19637 

0.19939 

0.20711 

0.21306 

0.26606 

0.27524 

0.27683 

0.28283 

0.28276 

0.28999 

0.3005 

0.34651 

0.35727 

0.36444 

0.36852 

0.37743 

0.38536 

0.39972 

2.03876E‐4 

2.36421E‐4 

2.11559E‐4 

1.79287E‐4 

1.86388E‐4 

2.29796E‐4 

2.39577E‐4 

 

Supplementary Table S10: Xcelligence Cell Index and P values of shKMT2D#2-

21a+siSLC2A3 versus shKMT2D#2-21a+siC#1 CAPAN-2 cells.  

List of Cell Index values derived from the measured impedances and continuously displayed on 

the Xcelligence Software user interface. Each experimental condition was performed in 

triplicates. Statistical analyses were performed using one-way ANOVA and the P values 

corresponding to the comparison of siRNA- transfected versus control cells are shown at every 

single time point. P values ≤0.05 are marked in red. Differences in Cell Index measurements are 

significant after 36.1 hours of monitoring. 

 

Table S11 

Top Networks                                     

ID Associated Network Functions Score            Score 

 
Cell Cycle, Cell Death and Survival, RNA Post-Transcriptional Modification 
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Cell Morphology, Connective Tissue Disorders, Developmental Disorder 
 44 

Cellular Assembly and Organization, DNA Replication, Recombination and Repair, Cell Cycle 
 43 

Cancer, Endocrine System Disorders, Nervous System Development and Function 
 39 

Lipid Metabolism, Small Molecule Biochemistry, Vitamin and Mineral Metabolism 36 
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Supplementary Table S11: Bioinformatics prediction of the top networks 

regulated by KMT2D.  

The list of the top 5 networks derived from IPA GO algorithms for the KMT2D-regulated 

genes (Figure 3G). “Score” refers to the numerical value used to rank networks 

according to how relevant they are to the genes in the input dataset. 

 

Table S12 

 

Relative 
Hazard 

(Surv1/Surv2) 

Median 
Survival 
Group 2 

Total events 
needed 

.90 (1.11) 667 (540) 2828 

.85 (1.18) 706 (510) 1189 

.80 (1.25) 750 (480) 631 

.75 (1.33) 800 (450) 379 

.70 (1.43) 857 (420) 247 

.67 (1.50) 900 (400) 191 

.65 (1.54) 923 (390) 169 

.60 (1.67) 1000 (360) 120 

.57 (1.75) 1050 (343) 100 

.55 (1.82) 1090 (330) 88 

.50 (2.00) 1200 (300) 65 
 
 

Table S12: Sample Size Calculations. 

2-tail test has been conducted by the Mayo Clinic Pancreatic Cancer SPORE 

Biostatistics Core, for sample size calculations (Cohort V). To correctly reject a false null 

hypothesis, critical values have been set as follows: α .05, Power=.80, 50% allocation 

per group. 
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Table S13 

KMT2D Expression 
Quartile 1 
(≤1.743) 
(N=54) 

Quartile 2 
(>1.743, ≤3.917) 

(N=55) 

Quartile 3 
(>3.917, ≤26.986) 

(N=55) 

Quartile 4 
(>26.986) 

(N=56) 
P value 

 
Age at Diagnosis 

    .7052 

N 41 45 48 54  
Mean (SD) 64.78 (12.12) 64.53 (11.48) 64.98 (12.61) 63.15 (10.51)  

Median 67.00 66.00 64.50 62.00  
Q1, Q3 55.00, 75.00 55.00, 74.00 53.50, 75.00 57.00, 72.00  
Range (41.00-88.00) (37.00-81.00) (41.00-89.00) (43.00-92.00)  

      
Vital Status     .2316 

Missing 6 4 4 1  
Alive 8 (16.7%) 6 (11.8%) 2 (3.9%) 6 (10.9%)  

Deceased 40 (83.3%) 45 (88.2%) 49 (96.1%) 49 (89.1%)  
      

Survival (Days)      
N 30 39 39 50  

Events 25 35 37 44  

Median Survival Days 949.0 (588.0-
1239.0) 

602.0 (413.0-
874.0) 

788.0 (409.0-
1127.0) 

565.0 (487.0-
751.0)  

5 Yr Survival Rate 19.1% (4.0%-
34.2%) 

6.0% (0.0%-
14.1%) 

17.9% (5.9%-
30.0%) 

21.4% (9.6%-
33.3%)  

Year 5 N at Risk 4 2 7 8  
      

Sex     .2540 
Missing 6 4 4 1  
Female 21 (43.8%) 31 (60.8%) 24 (47.1%) 24 (43.6%)  

Male 27 (56.3%) 20 (39.2%) 27 (52.9%) 31 (56.4%)  
      

Race     .6593 
Missing 9 5 4 1  

1=American Indian/Alaskan Nativ
e 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (1.8%)  

2=Asian/Asian-American 1 (2.2%) 1 (2.0%) 0 (0.0%) 0 (0.0%)  
3=Black/African-American 0 (0.0%) 1 (2.0%) 0 (0.0%) 1 (1.8%)  

5=White 44 (97.8%) 48 (96.0%) 51 (100.0%) 53 (96.4%)  
      

Usual Adult BMI     .0252 
N 35 39 44 51  

Mean (SD) 27.01 (5.12) 27.59 (5.69) 30.21 (6.09) 29.67 (5.27)  
Median 26.63 28.34 29.32 28.80  
Q1, Q3 24.24, 29.23 23.81, 31.46 26.24, 32.03 25.06, 33.66  
Range (15.31-43.72) (16.46-38.80) (20.60-46.18) (18.88-43.02)  

      
Usual Adult BMI (<30,30+)     .1108 

Missing 19 16 11 5  
<30 28 (80.0%) 27 (69.2%) 24 (54.5%) 32 (62.7%)  
30+ 7 (20.0%) 12 (30.8%) 20 (45.5%) 19 (37.3%)  

      
Weight Loss     .0060 

Missing 6 4 4 1  
No 22 (45.8%) 21 (41.2%) 11 (21.6%) 11 (20.0%)  
Yes 26 (54.2%) 30 (58.8%) 40 (78.4%) 44 (80.0%)  

      
Pounds Lost     .0004 

N 48 51 51 55  
Mean (SD) 8.63 (10.71) 13.78 (15.62) 20.10 (19.31) 21.16 (17.58)  
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KMT2D Expression 
Quartile 1 
(≤1.743) 
(N=54) 

Quartile 2 
(>1.743, ≤3.917) 

(N=55) 

Quartile 3 
(>3.917, ≤26.986) 

(N=55) 

Quartile 4 
(>26.986) 

(N=56) 
P value 

Median 5.00 11.00 15.00 20.00  
Q1, Q3 0.00, 13.50 0.00, 22.00 7.00, 30.00 10.00, 30.00  
Range (0.00-40.00) (0.00-60.00) (0.00-85.00) (0.00-70.00)  

      
Stage at Surgery     .7224 

Missing 26 23 18 8  
IA 0 (0.0%) 0 (0.0%) 1 (2.7%) 0 (0.0%)  
IB 3 (10.7%) 3 (9.4%) 3 (8.1%) 3 (6.3%)  
IIA 5 (17.9%) 7 (21.9%) 13 (35.1%) 15 (31.3%)  
IIB 20 (71.4%) 22 (68.8%) 20 (54.1%) 29 (60.4%)  
IV 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (2.1%)  

 

Table S13: Quartile-based correlation of KMT2D expression with demographic 

and clinical characteristics of pancreatic cancer patients (Cohort V). 

Pancreatic carcinomas were subdivided in 2 groups: carcinomas with below median 

(<3.917) KMT2D expression and carcinomas with above median (>3.917) KMT2D 

expression. N: number of patients with clinical information; BMI: Body Mass Index. 

Clinical correlations were examined using the SAS software. 

 

Table S14 

Primer Sequence Tm (°C) 

FASN Forward CTT GGC CTT GGG TGT GTA CT 57.4 
FASN Reverse CTG ATC ATC AAG AGC CAC CA 54.6 
KMT2D Forward ATG CAG CCA AGG ACC TAG AA 56.4 
KMT2D Reverse ATG CCT CGA TTC TGC TCT TC 56 
KDM8 Forward TCA GTG CAG AGA GCC AGA GA 54.1 
KDM8 Reverse ATC GGC CTC GTG TAA CAA GT 55.9 
KDM4C Forward TGG ATC CCA GAT AGC AAT GA 53.1 
KDM4C Reverse TGT CTT CAA ATC GCA TGT CA 52.3 
KDM2A Forward CCT CAG TGG CAT CAT CAA GA 54.5 
KDM2A Reverse TTT CAG TCC TGG CAG CCT AT 56.1 
KDM5B Forward CCT TGC CAA ATG GAA AG AAA 51.5 
KDM5B Reverse CTT CCC CAA GAG TTG CCA TA 54.6 
KMT2B Forward ACT TCG AGG ACA TGG AGG TG 55.6 
KMT2B Reverse GCG GCT ACA ATC TCT TCC TG 55.6 
KMT2C Forward GAA TCA CTT CCT GGG GTT GA 54.5 
KMT2C Reverse GGC AAG AGG AAG TTC CAT GA 54.8 
RELA Forward CCA GAC CAA CAA CAA CCC CT 57.6 
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RELA Reverse TCA CTC GGC AGA TCT TGA GC 57.0 
SETD6 Forward GCT TTC AGG AAC CAC TGG AG 55.8 
SETD6 Reverse GGC GTT GTG ATT GGC TAA GT 55.8 
SLC2A3 Forward TCC ACG CTC ATG ACT GTT TC 55.1 
SLC2A3 Reverse GCC TGG TCC AAT TTC AAA GA 53.3 
SLC2A1 Forward GTG GAG ACT AAG CCC TGT CG 57.3 
SLC2A1 Reverse CAT AGC CAC CTC CTG GGA TA 55.8 
STK11 Exon 6 Forward TCG AAA TGA AGC TAC AAC ATC      50.7 
STK11 Exon 6 Reverse TTT CAG CAG GTC AGA GAG 51.3 
SUV420H1 Forward TCA ACT GGT CGA GAT ACA GCA 55.6 
SUV420H1 Reverse CTC CAA AGA ACC CAT CTC CA 54.3 
TSC1 Forward CTG GAG GAC TGC AGG AAC AT 56.9 
TSC1 Reverse GAG CAG CAG CTC AGT GTG AC 58.5 
β-actin Forward CCC AGC ACA ATG AAG ATC AA 57.1 
β-actin Reverse ACA TCT GCT GGA AGG TGG AC 53.0 
GAPDH Forward ATG TTC GTC ATG GGT GTG AA 54.4 
GAPDH Reverse GGT GCT AAG CAG TTG GTG GT 57.9 
 

Supplementary Table S14 Primers used in qPCR analysis. 

The list of all primer sequences used for real-time PCR analysis. 

 

 

SUPPLEMENTARY MATERIALS AND METHODS 

Cell Cultures and Treatments 

Pancreatic cancer cell lines (MIAPaCa-2, PANC-1, CAPAN-1, CAPAN-2, AsPC-1, 

BxPC-3, HPAF-II and CFPAC-1) were purchased from ATCC. MIA PaCa-2 and PANC-1 

were grown in DMEM, CAPAN-1 and CFPAC-1 in IMDM, CAPAN-2 in McCoy’s 5A, 

AsPC-1 and BxPC-3 in RPMI 1640 (Gibco), HPAF-II in EMEM (ATCC), all 

supplemented with 10% FBS (Gemini Bioproducts). In the case of MIA PaCa-2, medium 

was also supplemented with 2.5% horse serum (Gibco). STR analysis has been 

performed as a method for human cell line authentication. 
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Pancreatic cancer cells were plated (2.5*105 cells in 35mm dishes) and after 24 h were 

treated with 1 or 2 µM of 5-AZA-CdR (A3656, Sigma-Aldrich). Cells were incubated for 0 

to 4 days before DNA, RNA or protein extraction.  

Around 80% confluent MIA PaCa-2 cells were pretreated with 100 nM rapamycin 

(#1292, TOCRIS) for 24 h. Cell lysates were analyzed by IB analysis. 

KMT2D-silenced MIA PaCa-2 cells were treated with the inhibitors of NF-κB activation, 

Tanshinone IIA (4426) and RO 106-9920 (1778) purchased from TOCRIS, for 24 h 

before RNA extraction. 

MIA PaCa-2 cells were plated in 96-well dishes (1*103 cells/well) and treated with a) 

different doses of lipids including: cis-13,16-Docosadienoic (Hebei Zhongzhuo Import 

and Export Trade Co, Ltd), 13Z,16Z,19Z-Docosatrienoic (SC-200782, Santa Cruz 

Biotechnology, Inc) or 4,10,13,16-Docosatetraenoic acid (D3659, Sigma-Aldrich) and b) 

the lipid synthesis inhibitors SC 26196 (4189, TOCRIS) and SB 204990 (4962, 

TOCRIS). Cells were incubated for 1, 3 or 5 days before measurement of cell viability 

and for 3 days before performing in vitro invasion assays. 

 

Real-Time PCR Analysis 

RNA purified from cells and tissues with TRIZOL (Life Technologies) was reverse-

transcribed to form cDNA using the iSCRIPT RT Supermix (Bio-Rad), which was 

subjected to real-time PCR analysis using the iQ SYBR Green Supermix (Bio-Rad) on a 

CFX384 Touch Real-Time PCR Detection System (Bio-Rad). The primer sequences 

used for real-time PCR were acquired from previous studies [3] or designed using the 

NCBI Nucleotide Database (http://www.ncbi.nlm.nih.gov/nuccore), Primer3 v.0.4.0 
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(http://bioinfo.ut.ee/primer3-0.4.0) and UCSC In-Silico PCR 

(http://genome.ucsc.edu/cgi-bin/hgPcr) and are included in Table S14. Gene expression 

levels were normalized to the levels of GAPDH and β-actin. Normalized gene 

expression levels were quantified to the respective control. Bars represent means ± SE; 

experiments were performed in quadruplicates for each condition. 

For Kaplan-Meir studies in patients’ Cohort V, transcript expression for human KMT2D 

was determined using PerfeCTa SYBR Green FastMix (Quanta BioSciences 

Inc.,Gaithersburg, MD) and the following primer sets: KMT2D, 5’- 

AACCATATCGGCCTGGCATT -3’ (forward) and 5’- CAGCAGGTATCACCTCGTCG -3’ 

(reverse); 18S, 5’- AACCCGTTGAACCCCATTCGTGAT -3’ (forward) and 5’- 

AGTCAAGTTCGACCGTCTTCTCAG -3’ (reverse). 500 ng RNA was reverse 

transcribed using High Capacity cDNA synthesis kit (Applied Biosystems). 10 ng cDNA 

from each sample was used for qPCR analysis. Amplification was performed using the 

C1000 Thermal Cycler (Bio-Rad). RNA levels were normalized by comparison with the 

corresponding housekeeping RNA level in the same sample. The results are calculated 

following the 2ΔCt (where ΔCt represents the difference in threshold cycles between the 

target and control gene). 

 

Whole Exome Sequencing 

Genomic DNA was isolated from human MIA PaCa-2 and CAPAN-2 pancreatic cancer 

cell lines using QIAamp DNA Mini Kit (51304) and used for Whole Exome Sequencing 

that was conducted at the UCLA Clinical Microarray Core. The library construction was 

performed using the SeqCap EZ System from NimbleGen according to the 
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manufacturer’s instructions. Briefly, genomic DNA was sheared, size selected to roughly 

300 base pairs, and the ends were repaired and ligated to specific adapters and 

multiplexing indexes. Fragments were then incubated with SeqCap biotinylated DNA 

baits after LM-PCR and the hybrids were purified using streptavidin-coated magnetic 

beads. After amplification of 18 or less PCR cycles, the libraries were then sequenced 

on the HiSeq 3000 platform from Illumina, using 100-bp pair-ended reads. The 

sequence data were aligned to the GRCh37 human reference genome using BWA 

v0.7.7-r411. PCR duplicates were marked using MarkDuplicates program in Picard-

tools-1.115 tool set. GATK v3.2-2 was used for INDEL (insertions and deletions) 

realignment and base quality recalibration. Exome coverage was calculated using the 

bedtools. Samtools was used to call the SNVs (single nucleotide variants) and small 

INDELs. Varscan2 was used to call the somatic SNVs. All variants were annotated 

using the Annovar program. 

 

Immunoblot Analysis 

Total cell extracts were separated by SDS-PAGE and transferred to PVDF membranes 

following standard procedures. Frozen tissue biopsies were homogenized using RIPA 

buffer (Cell Signaling Technology), followed by sonication. In the case of KMT2D, 

protein levels were monitored by 5% SDS-PAGE using modified long apparatus for 

extended running time. Transfer time reached 24 h at 40C and the buffering system 

contained 15% methanol. The following antibodies were used for immunoblot analysis: 

KMT2D (R0118-1, Abiocode), mono-methyl-Histone H3 (Lys4) (5326), di-methyl-

Histone H3 (9725), tri-methyl-Histone H3 (Lys4) (9751), Histone H3 (14269), FASN 
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(3180), phospho-mTOR (Ser2448) (5536), mTOR (2983), RICTOR (2114), phospho-NF-

κB p65 (Ser536) (3033), NF-κB p65 (8242), CREB (9104) (Cell Signaling Technology). 

The protein levels that corresponded to the immunoreactive bands were quantified 

using the Scion Image analysis software (Scion Corp., Frederick, MD). 

 

Cell Viability Assay  

MIA PaCa-2 cells were plated in quadruplicates and treated with exogenously added 

lipids in 96-well plate (1*103 cells/well) and cell growth was assessed 1, 3 or 5 days 

later using the CellTiter Glo Luminescence Cell Viability Assay (Promega). Data are 

expressed as mean fluorescence (arbitrary units) ± S.D. 

 

Anchorage-Independent Cell Growth Assay 

Triplicate samples of 25*103 MIA PaCa-2 cells from each treatment were assayed in 48-

well plates for colony formation using the CytoSelect Cell Transformation kit (Cell 

Biolabs, Inc). Colorimetric quantitation of colonies has been performed according to the 

manufacturer’s instructions. Data were expressed ± SE of the mean of at least 2 

independent experiments. 

 

Invasion assay 

Invasion in matrigel has been conducted by using standardized conditions with BD 

BioCoat Matrigel invasion chambers (354480; BD Biosciences) according to the 

manufacturer's protocol. Assays for MIA PaCa-2 cells were conducted using 10% FBS-

containing media as chemoattractant. Noninvading cells on the top side of the 
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membrane were removed, whereas invading cells were fixed and stained with .1% 

crystal violet, 22 h after seeding. The cells that migrated through the filter were 

quantified by counting the entire area of each filter divided in four fields, using a grid and 

an Evos microscope at a X20 magnification. Data are expressed as the mean number 

of invading cells per field ± SD. 

 

Dynamic Monitoring of Cell Proliferation 

Real-time cell proliferation analysis based on the application of electrical cell substrate 

impedance changes 

(https://lifescience.roche.com/wcsstore/RASCatalogAssetStore/Articles/BIOCHEMICA_

4_08_p14-16.pdf) was performed using the xCELLigence RTCA instrument (ACEA 

Biosciences). The presence of cells affects the local ionic environment at the electrode 

solution interface. Cell status is represented by a dimensionless parameter termed Cell 

Index, which is derived as the relative change in measured electrical impedance, after 

subtraction of the background measurements from media alone. Local ionic 

environment varies according to cell size, cell morphology and strength of adhesion of 

the cells to the surface of the electrode, resulting in changes of the electrode 

impedance. 5*103 cells were seeded in quadruplicates of an E-Plate 96 with 

interdigitated microelectrode arrays integrated in the bottom of each well. Subsequently, 

the E-Plate 96 was mounted on the SP Station of the xCELLigence RTCA system which 

is placed in a standard temperature-controlled CO2 incubator under humidity saturation. 

The RTCA Software preinstalled on the RTCA control unit allows automatic selection of 

wells for measurement and real-time data acquisition within preprogrammed 15 min 
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time intervals.  Bars represent means±SD; experiments were performed in 

quadruplicates for each condition. 

 

Immunohistochemistry and Digital Pathology Analysis 

For immunohistochemical analysis of KMT2D in matched normal and cancer human 

tissues, deparaffinized 5-μm sections were incubated sequentially in accordance with 

the instructions of the LSAB kit (DAKO Corporation). For digital automated 

morphometry, the immunohistochemically stained sections were digitized at 40x 

magnification using an Aperio Scanscope CS (Aperio). The final immunohistochemical 

score was calculated from a combination of the intensity and percentage scores [4]. 

Antigen retrieval was performed by incubating the slides in boiling .01% sodium citrate 

pH 6.0 for 5 min. The endogenous peroxidase activity was inhibited by immersing the 

slides in 3% H2O2-methanol for 25 min and the background nonspecific binding was 

reduced by incubating with 1% BSA in PBS for 60 min. The slides were incubated 

overnight with antibody against KMT2D (1:200) (HPA035977, Sigma-Aldrich). In order 

to reduce the variability, all samples from each group were processed at the same time 

in a single experiment using a single batch of diluted antibody. The slides were then 

washed 5 times in PBS, followed by sequential incubations with biotinylated secondary 

antibody for 30 min at RT, streptavidin-HRP conjugate for 30 min at RT and 3,3'-

diaminobenzidine tetrahydrochloride (liquid DAB) for 3 min in the dark. The reaction was 

arrested with distilled water and the slides were counterstained with hematoxylin. 

Thereafter, the tissues were washed in tap water for 5 min, dehydrated through ethanol 
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baths (70, 90 and 100%) and xylene. Slides were finally mounted with E-2 Mount 

medium (Shandon lab). 

The Aperio Scanscope CS obtains 40X images with a spatial resolution of 0.45 

μm/pixels. The images were reviewed using an ImageScope (Aperio). Once the areas 

were recorded (500 μm for each tissue), they were sent for automated image analysis 

using the Spectrum Software V11.1.2.752 (Aperio). For the within tissue intensity, an 

algorithm was developed to quantify the total or nuclear protein expression. The output 

from the algorithm gives a number of quantitative measurements, namely the intensity, 

concentration and percentage of positive staining. The quantitative scales for the 

intensity and percentage were categorized into 4 and 5 classes, respectively, after the 

cut-off values were determined. The staining intensity was categorized as 0 (no 

staining), 2+ (moderate) and 3+ (strong). 

All other immunostainings of formalin fixed paraffin embedded (FFPE) sections have 

been performed by the Translational Pathology Core Laboratory, UCLA. The 

endogenous peroxidase activity was blocked with 3% hydrogen peroxide in methanol 

for 10 min. Heat-induced antigen retrieval was carried out for all sections in .01M Citrate 

buffer, pH=6.0 by using a Biocare decloaker at 95oC for 25 min. The slides were 

incubated for 1h with antibodies against KMT2D (1:200) (HPA035977, Sigma-Aldrich), 

SLC2A3 (1:100) (20403-1-AP, Proteintech), phosphorylated NF-κB p65 (536) (1:100) 

(ab86299, Abcam) and Ki-67 (1:100) (M7240, Agilent). The signal was detected using 

Mach3 rabbit, HRP conjugated polymer for 30 min (Biocare Medical) and visualized with 

the diaminobenzidine reaction.  Images were further captured with an Axio Imager.Z1 

upright microscope (Carl-Zeiss). 
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HM450 Methylation array 

For global methylation profiling, the Illumina Infinium HumanMethylation450 (HM450) 

BeadChIP has been used (Illumina, San Diego, CA). Bisulfite conversion has been 

performed on 1 µg of genomic DNA from each sample using the EZ-96 DNA 

Methylation Kit (Zymo Research, Irvine, CA) according to the manufacturer’s 

instructions. Bisulfite-converted DNA was whole genome amplified and enzymatically 

fragmented prior to hybridization to BeadChIP arrays. The oligomer probe designs of 

HM450 arrays follow the Infinium I and II chemistries, in which locus-specific base 

extension follows hybridization to a methylation-specific oligomer. The level of DNA 

methylation at each CpG locus was scored as beta (β) value calculated as (M/(M+U)), 

ranging from 0 to 1, with 0 indicating no DNA methylation and 1 indicating fully 

methylated DNA. The data were extracted using Illumina Genome Studio Methylation 

Module and quantile normalized using ‘preprocesscore’ R package (https://cran.r-

project.org/). Of the 485,577 CpG probes on the array, we filtered out probes with high 

detection P values, probes with a SNP within 10 base pairs of the target CpG [5] and 

repeat regions and probes on X and Y chromosomes, leaving 371,478 probes. The term 

‘hyper-methylation’ was used when there was an increased DNA methylation in patients 

compared to controls and, the term ‘hypo-methylation’ was used when we observed a 

decreased DNA methylation in patients compared to controls.  

For statistical and bioinformatics analyses, Wilcoxon rank-sum tests were conducted to 

compare methylation array data between pancreatic cancer patients and healthy 

controls. Magnitude of DNA methylation changes was assessed using methylation beta 

values. Correction for multiple comparisons was performed using FDR (Benjamini-
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Hochberg) approach. A corrected P value, denoted as, ‘q’≤.05 was considered 

significant. The mean difference in betas, associated P and q values for chromatin 

modifiers are presented in Table EV1. 

 

Targeted Bisulfite Sequencing and Data Analysis 

Next-generation sequencing for the evaluation of DNA methylation at single-nucleotide 

resolution has been conducted by Zymo Research Corporation, Irvine, CA. Assays were 

designed targeting CpG sites in the specified ROI using primers created with Rosefinch, 

Zymo Research’s proprietary sodium bisulfite converted DNA-specific primer design 

tool. The primer sequences used are as follows: (Forward: 

TTTAGTTTATGTTTTTGTGTTAGGATTAGAA, Reverse: 

AATAAACATATAAATCTCTTTCTTAACACCAA). Sequence reads were aligned back to 

the reference genome using Bismark 

(http://www.bioinformatics.babraham.ac.uk/projects/bismark/), an aligner optimized for 

bisulfite sequence data and methylation calling (Krueger & Andrews, 2011). The 

methylation level of each sampled cytosine was estimated as the number of reads 

reporting a C, divided by the total number of reads reporting a C or T. Following primer 

validation, provided samples were bisulfite converted using the EZ DNA Methylation-

LightningTM Kit (D5030, Zymo Research) according to the manufacturer’s instructions. 

Multiplex amplification of all samples using ROI specific primer pair and the Fluidigm 

Access ArrayTM System was performed according the to the manufacturer’s 

instructions. The resulting amplicons were pooled for harvesting and subsequent 

barcoding according to the Fluidigm instrument’s guidelines. After barcoding, samples 
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were purified using ZR-96 DNA Clean & Concentrator™-5 (D4023, Zymo Research) 

and then prepared for massively parallel sequencing using a MiSeq V2 300bp Reagent 

Kit and paired-end sequencing protocol according to the manufacturer’s guidelines. 

Sequence reads were identified using standard Illumina base-calling software and then 

analyzed using a Zymo Research proprietary analysis pipeline. Low quality nucleotides 

and adapter sequences were trimmed off during analysis QC. Paired-end alignment 

was used as default. Index files were constructed using the 

bismark_genome_preparation command and the entire reference genome. The --

non_directional parameter was applied while running Bismark. All other parameters 

were set to default. Nucleotides in primers were trimmed off from amplicons during 

methylation calling. 

 

Plasmid Construction and in vitro Methylation 

Linear 300 bp DNA fragments between nt: -179 and +122 relatively to the transcription 

start site in the human KMT2D genomic region were constructed by Genewiz either in 

the wild type form (unmodified), or modified by a C to A mutation at CpG sites -29 (Mut 

1) or +145 (Mut 2) or both (double Mut). Artificial SacI and HindIII restriction sites have 

been incorporated using Native Taq Polymerase (18038-018, Life Technologies) and 

the following primers: sense, 5’-GTAGATCAGAGCTCACTTTCTTG-3’; antisense, 5’-

CTAGTCATAAGCTTTCCTTGTGC- 3’. The resulting PCR products were subsequently 

cloned into the pCR 2.1-TOPO vector (450641, Life Technologies) using the TOPO TA 

cloning kit (Life Technologies). The pCR 2.1 TOPO plasmids containing the KMT2D 

genomic inserts (hereafter referred to as TOPOKMT2D) were linearized with SacI 
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(R3156M, New England Biolabs) and in vitro methylated using SssI methylase 

(M0226L, New England Biolabs), which nonspecifically methylates all CpG 

dinucleotides. The efficiency of in vitro methylation was confirmed by resistance to 

cleavage by the methylation-sensitive restriction enzyme HpaII (R0171L, New England 

Biolabs) that has recognition site(s) in the analyzed regions and no sites within the 

sequence of pCR 2.1 TOPO vector. The linearized methylated and unmethylated 

TOPOKMT2D vectors were then digested with HindIII (R3104T, New England Biolabs) 

to excise the KMT2D inserts. After fractionation on a 1.8 % agarose gel, the DNA bands 

corresponding to 300 bp were cut from the gel, isolated using NucleoSpin® Gel and 

PCR Clean-up columns (Macherey-Nagel). To determine whether global or site-specific 

CpG methylation of the KMT2D genomic region affected gene expression in a reporter 

gene construct, the methylated and unmethylated control fragments were then ligated 

into the pGL4.82 [hRluc/Puro] Vector (E750A, Promega) between the SacI and HindIII 

restriction sites. The pGL4.82 [hRluc/Puro] plasmid is designed for high expression and 

reduced anomalous transcription. The vector encodes the luciferase reporter gene 

hRluc but lacks eukaryotic promoter and enhancer sequences. T4 DNA Ligase 

(M0202S, New England Biolabs) was used to perform the ligation reaction according to 

the manufacturer’s instructions, at 1:3 vector to insert ratio. The efficiency of ligation and 

equivalence of incorporated DNA into the methylated and unmethylated constructs were 

confirmed by agarose gel electrophoresis. For further validation, DNA sequence 

analysis across the multiple cloning site region located upstream of the hRluc gene was 

performed using RVprimer3 clockwise primer (E448A, Promega) by Genewiz. The 

effect of total methylation on the transcriptional activity of the inserted KMT2D 
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fragments was expressed as the relative change in reporter gene activity. Data were 

presented as the mean of Luminescence Units ± SE of 3 independent experiments 

performed in triplicates. 

 

Chromatin Immunoprecipitation, Sequencing and Analysis 

Chromatin immunoprecipitation was carried out using the SimpleChIP Plus Enzymatic 

Chromatin IP Kit (Cell Signaling Technology). Briefly, the chromatin fragments, derived 

from siC#1, siKMT2D#1 and siKMT2D#2 treated cells, were immunoprecipitated with 

antibody against tri-methyl-Histone H3 (Lys4) (9751, Cell Signaling Technology) at a 

ratio 1:50 or 1:100, respectively. After purification, libraries for next generation 

sequencing were prepared using NEBNext® ChIP-seq Library Prep Master Mix Set for 

Illumina® (E6240, New England BioLabs) and further analyzed using Illumina 

NextSeq500 system (single-end 75bp protocol). Both ChIP-seq and Bioinformatics 

Analyses were performed by the Center for Cancer Computational Biology, Dana-

Farber Cancer Institute, Boston, MA. Sequencing reads in fastq-format were aligned to 

the UCSC hg19 reference genome using BWA (version 0.7.9a bwa mem with default 

options). Duplicate reads were removed with Picard tools (v. 1.115) MarkDuplicates and 

were filtered to retain only primary alignments with samtools (v0.1.19, view command 

with -F 0x100 flag). ChIP-seq peaks were called using HOMER (v4.7) findPeaks by 

selecting matched input samples with default settings (Poisson P value of <=1E-4 and 

fold change >=4.0). Histone option was employed. Further, peaks were annotated using 

HOMER's annotatePeaks utility using the hg19 annotations database provided with the 

software. Analysis of differentially bound peaks was performed using HOMER's 



63 

 

getDifferentialPeaks command, which examines the distributions of reads to determine 

enrichment in a particular condition (Poisson P value <1E-4, fold-change >=4.0), 

suggesting a differentially bound peak. Plots of the distribution of distances to the 

annotated transcription start site were created directly from the annotated peak data 

provided as output by HOMER. Similar approach was applied for the pie charts 

representing the distribution of annotated peak features. Enrichment plots were 

constructed by comparing the read density (number of reads divided by the length of the 

peak region) in each of the experimental conditions for each set of peak regions. Read 

densities were found in both siC#1and siKMT2D conditions for all peak regions in the 

siKMT2D condition; enrichment values were calculated as the scaled difference 

between the densities. The increase in H3K4me3 read density (comparing siKMT2D to 

siC#1) was tested with a one-sided Wilcoxon signed-rank test (P<.001). Similarly, 

enrichment values were calculated in both conditions for the peak regions found in 

siC#1 condition (P<0.001). 

 

Luciferase Assay 

MIA PaCa-2 cells were transfected with the untreated or CpG MSssl-treated 

KMT2D/hRluc constructs and the pGL4.51 [luc2/CMV/Neo] (E1320, Promega) 

containing synthetic firefly luciferase luc2 gene. 48 h later luciferase activity was 

measured using the Dual Luciferase Reporter Assay System (E1960, Promega). Data 

were expressed ± SE of the mean of 3 independent experiments. 

In order to assess whether STK11 represents a direct transcriptional KMT2D target, 

MIA PaCa-2 cells were transfected with the LightSwitch RenSP reporter vector carrying 
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human STK11 promoter (S714439, SwitchGear Genomics) and the pLenti CMV Puro 

LUC (w168-1) (17477, Addgene) containing Luc reporter gene. At 24 h, the cells were 

transfected with siC#1 or siKMT2D#2 and 48 h later luciferase activity was measured 

using the Dual Luciferase Reporter Assay System (Promega). Data were expressed ± 

SE of the mean of 3 independent experiments. 

 

Metabolic Profiling 

Cellular metabolic rates were measured using a XF24-3 Analyzer (Seahorse 

Biosciences) by the Cellular Bioenergetics Core, UCLA. Cells were plated as a 

confluent monolayer in the Seahorse plate and left undisturbed for 24 h. Bioenergetic 

parameters were obtained in basal and after sequential injection of an ATPase inhibitor 

oligomycin (oligo), a mitochondrial uncoupler (FCCP) and mitochondrial inhibitors 

rotenone and myxothiazol (RM) in pancreatic cancer cells. Bars represent means ± SD; 

experiments were performed in quadruplicates for each condition. 

Lipids extraction from a) human cancer cells b) tumor tissues from mice bearing human 

pancreatic cancer xenografts and c) human biopsies, reconstitution in the solvent 

system suitable for analysis and quantitative evaluation of altered lipid profiles by LC-

MS analysis were performed by the Lipidomics Core Facility, Wayne State University. 

Lipid classes currently analyzed: FAs and total cholesterol. Bars represent means ± SD; 

experiments were performed in triplicates for each condition. 
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NADP/NADPH-Glo™ Assay  

The bioluminescent homogeneous NADP/NADPH-Glo™ Assay (G9081, Promega) was 

used for detecting total reduced nicotinamide adenine dinucleotides phosphates 

(NADPH) in cells pretreated with siC#1, siKMT2D#1 or siKMT2D#2, following the 

manufacturer’s protocol. Bars represent means±SD; experiments were performed in 

triplicates for each condition. 

 

Lactate Assay  

The Lactate Assay Kit (MAK064, Sigma) was used to determine the lactate production 

in cells pretreated with siC#1, siKMT2D#1 or siKMT2D#2 based on an enzymatic assay, 

which results in a colorimetric (570 nm) product, proportional to the lactate present, 

according to manufacturer’s instructions. Bars represent means±SD; experiments were 

performed in triplicates for each condition. 

 

Glucose Uptake Assay  

The Glucose Uptake Assay Kit (MAK083, Sigma) was used to determine the glucose 

uptake in cells pretreated with siC#1, siKMT2D#1 or siKMT2D#, according to 

manufacturer’s instructions. The glucose analogue, 2-deoxyglucose (2-DG) used, is 

taken up by cells and phosphorylated by hexokinase to 2-DG6P. 2-DG6P cannot be 

further metabolized and accumulates in cells, directly proportional to the glucose uptake 

by cells. Briefly, 2-DG uptake is determined by a coupled enzymatic assay in which the 

2-DG6P is oxidized, resulting in the generation of NADPH, which is then determined by 

a recycling amplification reaction in which the NADPH is utilized by glutathione 
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reductase in a coupled enzymatic reaction that produces glutathione. Glutathione reacts 

with DTNB to colorimetric product TNB, which is detected at 412 nm. Bars represent 

means ± SD; experiments were performed in triplicates for each condition. 

 

Cholesterol Uptake Cell-based Assay 

Cholesterol Uptake Cell-based Assay Kit (Cayman Chemical) was used to study cellular 

cholesterol trafficking, following the manufacturer’s protocol. Cells were treated with 

siC#1 or siKMT2D#2 in culture medium containing 20 μg/ml NBD Cholesterol and 

incubated for 72 h. Detection of cholesterol uptake was assessed by fluorescence 

microscopy using Axio Observer.D1 inverted microscope (Carl-Zeiss). 

 

Patient Samples  

RNA and DNA were extracted from ‘normal’ (adjacent non-tumoral) and PDAC tissues 

using TRIZOL (Life Technologies) and (QIAamp DNA Mini Kit, Qiagen), respectively. 

Samples originating from Cohort I were used for Gene expression profiling that was 

conducted at the UCLA Clinical Microarray Core, while DNA methylation analysis using 

Infinium HumanMethylation450 BeadChIP assay has been performed at the 

Translational Genomics Core, Cambridge, MA. For validation of the Gene expression 

array data, tissues originating from Cohorts II and III were subjected to RT-qPCR 

analysis., while FFPE tissues (Cohort IV) were subjected to immunohistochemical 

analysis. For correlation of KMT2D expression with overall patient survival, human 

pancreatic tumors (Cohort V) were approved by the institutional review boards of Mayo 
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School of Medicine and informed consent was obtained from all patients prior to tissue 

procurement and subsequent analysis. 

 

Statistical Analyses 

Quantitative data were expressed as means ± SD or SE of the mean, as indicated, or 

as boxes and whiskers (minimum-to-maximum), using Origin 9.1 Software. Statistical 

analyses were performed using one-way ANOVA or Pearson correlation. P values of 

<.05 were considered statistically significant. 

Clinical correlations were examined using the SAS software. The Kaplan-Meier test was 

used for univariate survival analysis. The Cox proportional hazard model was used for 

multivariate analysis and for determining the 95% confidence interval.  
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