848 research outputs found

    Foraging tactics of humpback whales feeding near salmon hatchery-release sites in Southeast Alaska

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2019Increases in the humpback whale (Megaptera novaeangliae) population have generated considerable interest in understanding the foraging habits of these large marine predators in the Gulf of Alaska. Globally, humpback whales are classified as generalist predators but are known to exhibit localized differences in diet. Intensified predation pressure is of particular concern to resource managers, who have observed whales feeding at juvenile hatchery salmon release sites in Southeast Alaska. We assessed the diets and behavioral tactics of humpback whales foraging near Hidden Falls Hatchery release sites (in Chatham Strait, 2016 to 2018) to better understand their predatory effects on juvenile hatchery-reared salmon. We used skin biopsies, prey sampling, and stable isotope analysis to estimate whales' diet composition. Aerial footage and photographic sequences were used to assess the foraging tactics used on this prey source. We observed three individual whales repeatedly feeding on juvenile hatchery-reared salmon, and we were able to sample them multiple times over a period spanning shifts in diet. Overall, the diets of these whales were higher trophically than other humpback whales foraging in the area, even before feeding on juvenile hatchery salmon started. These hatchery-feeding whales may be generally more piscivorous than other whales, which focused on planktivorous prey. Our repeat sampling, in conjunction with scheduled introductions of a novel prey source, provided a semi-controlled feeding experiment that allowed for incorporation and turnover rate estimates from humpback whale tissue in a way that was not previously possible for large, free-ranging cetaceans. Finally, during the course of this study we discovered an undescribed feeding tactic employed by hatchery-associated whales. We observed the use of solo bubble-nets to initially corral prey, followed by calculated movements to establish a secondary boundary with the pectoral fins that further condensed prey and increased foraging efficiency. Our study provided the first empirical evidence for what we describe as "pectoral herding". This work deepens our knowledge about humpback whale foraging ecology, how this innovative species is able to exploit newly available prey, and to what extent they feed on commercially valuable hatchery salmon.Alaska Whale Foundation (AWF), Lindblad Expeditions-National Geographic Conservation Fund, and Mark Kelley PhotographyGeneral introduction -- Chapter 1: Individual specialization among humpback whales in Southeast Alaska -- Chapter 2: Pectoral herding: an innovative tactic for humpback whale foraging -- General conclusions -- References: General introduction and general conclusions -- Appendix: Research approval

    Slight respiratory irritation but not inflammation in mice exposed to (1-->3)-beta-D-glucan aerosols.

    Get PDF
    Airway irritation effects after single and repeated inhalation exposures to aerosols of beta-glucan (grifolan) were investigated in mice. In addition, the effects on serum total immunoglobulin E (IgE) production and histopathological inflammation in the respiratory tract were studied. The beta-glucan aerosols provoked slight sensory irritation in the airways, but the response was not concentration dependent at the levels studied. Slight pulmonary irritation was observed after repeated exposures. No effect was found on the serum total IgE levels, and no signs of inflammation were seen in the airways 6 h after the final exposure. The results suggest that, irrespective of previous fungal sensitization of the animals, inhaled beta-glucan may cause symptoms of respiratory tract irritation but without apparent inflammation. Respiratory tract irritation reported after inhalation of fungi may not be entirely attributed to beta-glucan

    Unraveling the B. pseudomallei Heptokinase WcbL: from structure to drug discovery

    Get PDF
    Journal ArticleOpen Access funded by Biotechnology and Biological Sciences Research Council under a Creative Commons Attribution 4.0 International Public LicenseGram-negative bacteria utilize heptoses as part of their repertoire of extracellular polysaccharide virulence determinants. Disruption of heptose biosynthesis offers an attractive target for novel antimicrobials. A critical step in the synthesis of heptoses is their 1-O phosphorylation, mediated by kinases such as HldE or WcbL. Here, we present the structure of WcbL from Burkholderia pseudomallei. We report that WcbL operates through a sequential ordered Bi-Bi mechanism, loading the heptose first and then ATP. We show that dimeric WcbL binds ATP anti-cooperatively in the absence of heptose, and cooperatively in its presence. Modeling of WcbL suggests that heptose binding causes an elegant switch in the hydrogen-bonding network, facilitating the binding of a second ATP molecule. Finally, we screened a library of drug-like fragments, identifying hits that potently inhibit WcbL. Our results provide a novel mechanism for control of substrate binding and emphasize WcbL as an attractive anti-microbial target for Gram-negative bacteria.Biotechnology and Biological Sciences Research Counci

    Femtosecond Spectroscopy with Vacuum Ultraviolet Pulse Pairs

    Get PDF
    We combine different wavelengths from an intense high-order harmonics source with variable delay at the focus of a split-mirror interferometer to conduct pump-probe experiments on gas-phase molecules. We report measurements of the time resolution (<44 fs) and spatial profiles (4 {\mu}m x 12 {\mu}m) at the focus of the apparatus. We demonstrate the utility of this two-color, high-order-harmonic technique by time resolving molecular hydrogen elimination from C2H4 excited into its absorption band at 161 nm

    Nitrogen supply and cyanide concentration influence the enrichment of nitrogen from cyanide in wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L.)

    Get PDF
    Cyanide assimilation by the beta-cyanoalanine pathway produces asparagine, aspartate and ammonium, allowing cyanide to serve as alternate or supplemental source of nitrogen. Experiments with wheat and sorghum examined the enrichment of (15)N from cyanide as a function of external cyanide concentration in the presence or absence of nitrate and/or ammonium. Cyanogenic nitrogen became enriched in plant tissues following exposure to (15)N-cyanide concentrations from 5 to 200 microm, but when exposure occurred in the absence of nitrate and ammonium, (15)N enrichment increased significantly in sorghum shoots at solution cyanide concentrations of \u3e or =50 microm and in wheat roots at 200 microm cyanide. In an experiment with sorghum using (13)C(15)N, there was also a significant difference in the tissue (13)C:(15)N ratio, suggestive of differential metabolism and transport of carbon and nitrogen under nitrogen-free conditions. A reciprocal (15)N labelling study using KC(15)N and (15)NH(4)(+) and wheat demonstrated an interaction between cyanide and ammonium in roots in which increasing solution ammonium concentrations decreased the enrichment from 100 microm cyanide. In contrast, with increasing solution cyanide concentrations there was an increase in the enrichment from ammonium. The results suggest increased transport and assimilation of cyanide in response to decreased nitrogen supply and perhaps to ammonium supply
    corecore