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Abstract

Increases in the humpback whale (Megaptera novaeangliae) population have 

generated considerable interest in understanding the foraging habits of these large marine 

predators in the Gulf of Alaska. Globally, humpback whales are classified as generalist 

predators but are known to exhibit localized differences in diet. Intensified predation 

pressure is of particular concern to resource managers, who have observed whales feeding 

at juvenile hatchery salmon release sites in Southeast Alaska. We assessed the diets and 

behavioral tactics of humpback whales foraging near Hidden Falls Hatchery release sites (in 

Chatham Strait, 2016 to 2018) to better understand their predatory effects on juvenile 

hatchery-reared salmon. We used skin biopsies, prey sampling, and stable isotope analysis 

to estimate whales' diet composition. Aerial footage and photographic sequences were 

used to assess the foraging tactics used on this prey source. We observed three individual 

whales repeatedly feeding on juvenile hatchery-reared salmon, and we were able to sample 

them multiple times over a period spanning shifts in diet. Overall, the diets of these whales 

were higher trophically than other humpback whales foraging in the area, even before 

feeding on juvenile hatchery salmon started. These hatchery-feeding whales may be 

generally more piscivorous than other whales, which focused on planktivorous prey. Our 

repeat sampling, in conjunction with scheduled introductions of a novel prey source, 

provided a semi-controlled feeding experiment that allowed for incorporation and turnover 

rate estimates from humpback whale tissue in a way that was not previously possible for 

large, free-ranging cetaceans. Finally, during the course of this study we discovered an 

undescribed feeding tactic employed by hatchery-associated whales. We observed the use 

of solo bubble-nets to initially corral prey, followed by calculated movements to establish a 

secondary boundary with the pectoral fins that further condensed prey and increased 

foraging efficiency. Our study provided the first empirical evidence for what we describe as
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“pectoral herding”. This work deepens our knowledge about humpback whale foraging 

ecology, how this innovative species is able to exploit newly available prey, and to what 

extent they feed on commercially valuable hatchery salmon.
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General Introduction

Since the termination of commercial whaling, the humpback whale (Megaptera 

novaeangliae) population has increased in the Gulf of Alaska (Hendrix et al. 2012). In 2016, 

the distinct population segment that breeds in Hawai'i and primarily feeds in Alaska was 

removed from the Endangered Species List (U.S. Department of Commerce 2016). Though 

this policy change is seen by some humpback whale biologist as a win, increased 

population size has caused controversy over this large marine mammal's impact on 

commercial fisheries. Humpback whales are known to feed on commercially valuable 

species as well as the prey those species consume (Moran et al. 2018; Straley et al. 2017). 

Recent increases in population, in combination with large body size and high metabolic 

rates, has generated concern about exactly how much biomass humpback whales are 

removing from valuable fish populations.

Pacific salmon (Oncorhynchus spp.) comprise one of the most lucrative fisheries 

managed by the State of Alaska (Alaska Department of Fish and Game 2019). Salmon 

populations have been largely exploited and salmon hatcheries in Alaska were established 

to enhance fish productions for commercial and recreational catch by supplementing wild 

stocks (Araki and Schmid 2010). Salmon hatcheries provide approximately one third of the 

commercial salmon catch in Alaskan waters (Vercessi 2015). In the past several decades, 

humpback whales have been observed feeding on hatchery-released juvenile salmon in 

Southeast Alaska (Chenoweth et al. 2017). This additional predation mortality from 

humpback whales is thought to have reduced the number of fish that return to spawn. Given 

that recruitment of Pacific salmon is often determined at a ‘critical period' early in marine life 

(Beamish and Mahnken 2001; Hartt 1980), additional juvenile mortality from such a large 

predator during this period could have economic consequences for the fisheries that rely on 

hatchery production (Chenoweth and Criddle 2019). A better understanding of humpback 
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whale foraging behavior and diet compositions will enhance our knowledge about predation 

pressure on released juvenile salmon and help managers make informed decisions about 

future hatchery operations.

Humpback whales are known for their diverse feeding behaviors (Fleming et al. 2016; 

Jurasz and Jurasz 1979; McMillan et al. 2018; Parks et al. 2014; Weinrich et al. 1992) and 

localized foraging specializations (Sharpe 2001; Witteveen 2008; Ware et al. 2014; 

McMillan et al. 2018; Kosma et al. 2019). Various foraging strategies include lunge feeding 

(Jurasz and Jurasz 1979; Watkins and Schevill 1979), bubble-net feeding (Goldbogen et al. 

2017; Hain et al. 1982; Ingebrigtsen 1929; Jurasz and Jurasz 1979; Sharpe and Dill 1997), 

flick feeding (Jurasz and Jurasz 1979), cooperative feeding (Sharpe 2001), lobtail feeding 

(Weinrich et al. 1991) and other idiosyncratic tactics (Baker 1985; D'Vincent et al. 1985; 

Hain et al. 1982; McMillan et al. 2018). These techniques are innovative methods used to 

increase feeding efficiency. Humpback whales feeding on anthropogenically sourced prey 

at hatchery release sites is an excellent example of the foraging flexibility of this species. 

Though efforts have been made to document whales feeding at hatchery release sites 

(Chenoweth et al. 2017) and estimate the economic impact to fisheries (Chenoweth and 

Criddle 2019), little is known about individual foraging tactics or the relative importance of 

hatchery salmon in the diets of whales feeding at hatchery sites.

The goal of this thesis was to increase our understanding of the foraging ecology and 

feeding tactics of humpback whales targeting hatchery-release juvenile salmon in Southeast 

Alaska. Direct observations of humpback whales feeding are challenging to obtain and 

represent a single moment in time. Stable carbon and nitrogen isotope analysis (expressed 

as d13C and d15N values, respectively) can be useful in quantifying diet compositions of 

these large marine mammals over longer time frames. In chapter one, we used stable 
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isotope analyses to estimate the proportional contribution of different prey, including 

hatchery-reared juvenile salmon, to the diets of humpback whales. We also used repeated 

sampling of individual whales and a semi-controlled feeding experiment provided by 

scheduled hatchery releases to estimate stable isotope incorporation rate in humpback 

whale skin. In chapter two, we described specialized humpback whale foraging tactics to 

herd prey when feeding near hatchery release sites, including a novel tactic we termed 

‘pectoral herding'. We accomplished this by using emerging technology such as small 

cameras and unoccupied aerial vehicles to gain the necessary aerial perspective. The 

information provided herein furthers our understanding about the potential impacts of 

humpback whales on hatchery-released juvenile salmon in Southeast Alaska and more 

broadly expands upon the scientific literature regarding foraging ecology of humpback 

whales.

3
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Chapter 1 Individual specialization among humpback whales in Southeast Alaska 1

1 Kosma MM, McPhee MV, Wooller MJ, Szabo AR, and Straley JM. Individual specialization among 
humpback whales in Southeast Alaska. Intended for submission to Marine Mammal Science.

1.1 Abstract

Globally, humpback whales (Megaptera novaeangliae) are classified as generalist 

predators with a diverse diet, but regionally, these animals are known for phenotypic 

plasticity in foraging behavior and variable prey selection. In Southeast Alaska, humpback 

whales have been observed feeding on juvenile Pacific salmon (Oncorhynchus spp.) at 

hatchery release sites. Here we documented three individuals returning to repeatedly target 

this prey source over two years (2016 and 2017), and we combined feeding observations of 

these hatchery-associated whales with stable isotope analysis to expand our understanding 

of the foraging strategies and impact humpback whales have on this important marine 

resource. Generally, these three whales were found to be feeding at a higher trophic level 

than other humpback whales that were in the area but not targeting this anthropogenically 

derived food source. Trophic position was consistent over the two years, suggesting that 

hatchery-associated whales specialized on forage fish, whereas other whales in the area 

were targeting prey at lower trophic levels. Additionally, we obtained multiple tissue samples 

from the same free-ranging humpback whales over an extended period of time including 

times of known hatchery salmon releases, which allowed us to examine isotopic 

incorporation rate in humpback whale skin. The hatchery-associated whale that was 

sampled over the longest time period displayed an isotopic shift between 74 and 85 days 

after hatchery releases, believed to be due to the incorporation of hatchery-released 

juvenile salmon into its diet. Ultimately, isotopic characteristics of these unique whales 
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deepens our understanding of individual specialization and foraging ecology of humpback 

whales.

1.2 Introduction

Humpback whales (Megaptera novaeangliae) generally spend the winter months in 

warmer, low-latitude waters where they breed and then migrate to cooler, higher latitude 

waters to forage in early spring, summer, and fall. These animals are top predators that can 

have an influence on the structure of marine ecosystems (Croll et al. 1998; Trites et al. 

1997; Witteveen et al. 2012) through the consumption of substantial amounts of prey 

(Witteveen et al. 2015; Witteveen et al. 2006). Humpback whales are considered to be 

generalist predators with a diverse diet, feeding seasonally on krill (Thysanoessa spp. and 

Euphausia pacifica) and pelagic schooling fish, including capelin (Mallotus villosus), Pacific 

herring (Clupea pallasii), juvenile walleye pollock (Gadus chalcogrammus), and Pacific sand 

lance (Ammodytes hexapterus). Despite their generalist food habits, there are variations 

between the specific diets of feeding aggregations of humpback whales, where some 

groups target forage fish and others euphausiids (Witteveen et al. 2011). These cetaceans 

are known for their flexibility in foraging behavior (Chenoweth et al. 2017; Fleming et al. 

2016; Parks et al. 2014; Weinrich et al. 1992) which can be an advantage in a changing 

environment (Pigliucci 2005). Furthermore, there is evidence of local foraging specialization 

in humpback whales according to prey availability (Kosma et al. 2019; McMillan et al. 2018; 

Sharpe 2001; Ware et al. 2014; Witteveen 2008).

In Southeast Alaska, humpback whales have been observed feeding on hatchery-reared 

juvenile Pacific salmon (Oncorhynchus spp., Chenoweth et al. 2017). High densities of 

hatchery salmon at release sites can attract predators such as harbor seals, eagles, gulls, 

river otters, minks, and piscivorous fishes (Scheel and Hough 1997); consequently, 
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hatchery managers often release young salmon en masse as a predator-swamping tactic ( 

Chenoweth et al. 2017; Furey et al. 2016). However, this strategy can generate dense prey 

aggregations that are consumable by humpback whales (Piatt and Methven 1992). The 

presence of humpback whales has coincided with historically poor returns of chum salmon 

(O. keta) at the Hidden Falls Hatchery (located in Chatham Strait) in 2011, 2015, and 2016 

(Chenoweth et al. 2017). Thus, humpback whales are suspected of causing high predation 

mortality and reducing the number of salmon that return as adults. This is cause for concern 

among hatchery managers (Chenoweth and Criddle 2019), given that recruitment of Pacific 

salmon is often determined early in marine life (Beamish and Mahnken 2001; McNeil and 

Himsworth 1980). Hatcheries produce salmon to provide economic opportunities for 

fishermen and to decrease fishing pressure on wild salmon populations (Heard 2001; Heard

2012) . Understanding sources of predation mortality for juvenile hatchery salmon is crucial 

for assessing the success of hatcheries in supplementing fisheries catches and also 

provides information for ecosystem-based fisheries management in Alaska waters.

Estimating predation mortality by cetaceans is challenging, and conventional foraging 

studies (e.g., stomach content analysis, fecal sampling) are rarely feasible for these animals 

(Pierce et al. 2007). Analyses of the stable carbon and nitrogen isotope composition 

(expressed as d13C and d15N values, respectively) of organisms is a well-established 

method for quantifying food habits and is commonly used to estimate foraging strategies for 

marine mammals (Bowen and Iverson 2013; Nelson et al. 2018; Newsome et al. 2010; 

Todd et al. 1997; Witteveen et al. 2012). While direct feeding observations have temporal 

and spatial restrictions, stable isotopes provide dietary information through time, providing a 

more comprehensive understanding about an animal's foraging habits (Bowen and Iverson

2013) . Stable nitrogen isotope values are typically used as an index of trophic level, with 
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increases in d15N values representing increases in trophic level (Fry 2006). In marine 

mammal studies, d15N values typically increase ~2 - 4 ‰ per trophic level (Borrell et al. 

2012; Wild et al. 2018; Witteveen et al. 2011). Stable carbon isotope values typically reflect 

the source of primary production (Rau et al. 2016) and can be used as a proxy for foraging 

habitat. For example, consumers in marine benthic and nearshore areas tend to exhibit 

higher d13C values than those in pelagic and offshore areas (Burton and Koch 1999; 

Hobson et al. 1994; Miller et al. 2010). Although stable isotopes are generally limited in the 

degree to which they distinguish individual prey items, wheat-based fish feed should be 

easily distinguishable from marine prey (Tomida et al. 2014). This suggests that hatchery 

salmon predation could hypothetically leave an identifiable stable isotope signature in the 

tissues of humpback whales. Isotopic mixing models (Monteiro et al. 2015; Parnell et al. 

2013; Phillips and Gregg 2001; Phillips et al. 2014; Witteveen et al. 2012; Witteveen and 

Wynne 2016) could then be used to quantify the proportional contribution of hatchery 

salmon to humpback whale diets.

Understanding the rates of tissue incorporation and turnover are necessary for 

interpretation of isotopic mixing models, but these rates are not well known for cetaceans. 

Incorporation rate refers to the amount of time between prey ingestion and when the 

isotopic signature of that prey enters the tissue of a predator (Busquets-Vass et al. 2017; 

Thomas and Crowther 2015). Turnover rate refers to the rate of replacement of a tissue 

(Reiner 1953; Zilversmit et al. 1943). Stable isotope values from predator tissue reflect 

those of their prey over a time period relative to tissue turnover rate, and differences in 

turnover rate are one cause for variation in stable isotope signatures within and between 

tissues (Tieszen et al. 1983; Hobson and Clark 1992; Wild et al. 2018).
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To estimate tissue incorporation rate, controlled feeding studies typically switch between 

two isotopically distinct preys items and analyze a time series of tissue samples (Tieszen et 

al. 1983; Voigt et al. 2003; Busquets-Vass et al. 2017). Controlled feeding experiments are 

not feasible in large cetaceans, which cannot be held in captivity unlike species such as 

bottlenose dolphins (Tursiops truncates) and beluga whales (Delphinapterus leucas) (St. 

Aubin et al. 1990; Hicks et al. 1985). However, in our study the release dates for juvenile 

hatchery salmon from Hidden Falls Hatchery are known for each year, and this prey item 

should be distinct from all others because it is not available in the marine realm before 

releases occur. This unique situation of timed release of juvenile hatchery salmon is the 

closest circumstance to a controlled feeding study on free-ranging humpback whales. 

Additionally, the discrepancy between marine origin prey and a unique anthropogenically 

sourced prey with a terrestrially based (i.e., wheat-based, hatchery feed) signature, such as 

wheat-based hatchery feed, should represent a distinct and measurable shift in diets. 

Repeat sampling of the same individual whales before, during, and after fish releases 

should provide a time series of tissue samples to estimate incorporation and turnover rate. 

Biopsy sampling of humpback whales is a minimally invasive technique that provides skin 

tissue for isotopic assessment of diet (Palsboll et al. 1991; Todd et al. 1997; Weinrich et al. 

1991).

The overarching goal of this study was to use stable isotopes to better understand the 

foraging ecology of humpback whales feeding on a novel prey source, juvenile hatchery 

salmon. We used stable isotope signatures to quantify the diet compositions of humpback 

whales foraging in nearshore waters of Southeast Alaska (2016 and 2017), including 

whales observed feeding at hatchery release sites and other whales presumed to have fed 

primarily on marine prey. We also estimated changes in d13C signatures from repeatedly 
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sampled whales to understand temporal effects of feeding on hatchery-released juvenile 

salmon. Our objectives were to 1) use stable isotope values to characterize the potential for 

individual specialization on novel prey sources (i.e., hatchery salmon); 2) estimate the 

relative importance of hatchery-released juvenile salmon on humpback whale diets in 

Southeast Alaska, and 3) use repeated sampling of the same whales feeding on hatchery- 

released juvenile salmon to better understand incorporation rate and turnover rate in 

humpback whales. This study provides the first attempt at repeat sampling of the same free- 

ranging humpback whales over an extended period, allowing for isotope analysis to be used 

in longitudinal studies of foraging behavior.

1.3 Methods

1.3.1 Data Collection

This study was conducted in Chatham Strait, along the eastern shore of Baranof Island 

in Southeast Alaska (Fig. 1.1). We conducted systematic surveys from Warm Springs Bay 

north to Kelp Bay, with an emphasis on salmon hatchery release sites in Takatz Bay and 

Kasnyku Bay in 2016 (mid-May through the end of June) and 2017 (mid-April through end 

of July). All effort was timed to overlap with releases of juvenile salmon from Hidden Falls 

Hatchery (managed by the Northern Southeast Regional Aquaculture Association). In 2016, 

Hidden Falls Hatchery had two primary release sites (i.e., Takatz Bay and Kasnyku Bay) 

and released an estimated 90,613,267 juvenile chum and coho (O. kisutch) salmon. In 2017 

only Kasnyku Bay was used as a primary release site and 68,750,169 juvenile chum and 

coho salmon were released. Sampling effort in 2016 was over a 48-day period with 31 boat 

survey days and 2017 was over a 101-day period with 42 boat survey days.

We documented the behavior of each whale observed. Behavioral categories included 

feeding, milling (i.e., remaining in the same location and potentially diving on prey), 
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traveling, or resting. If the whale was feeding, we visually identified prey. When possible, 

during feeding events we used a cast net and herring jigs to sample prey for greater 

taxonomic specificity. Separate sampling efforts were conducted to collect krill (Euphausiids 

spp.) with a tucker trawl (90 cm x 70 cm, 1000 μm) at variable depth. In the laboratory, we 

removed juvenile salmon otoliths and used thermal markings (Volk et al. 1999) to 

distinguish hatchery-reared from wild-origin fish. Primary consumers (Mytilus spp.) were 

collected from docks in Warm Springs Bay and Kasnyku Bay and were used as isotopic 

baselines for trophic level calculations.

During systematic surveys, we took photographs with digital SLR cameras (focal lengths 

from 70 to 300 mm) to identify humpback whales. Individual whales were identified based 

on the pigmentation and trailing edges of their flukes and/or the shape and marking on their 

dorsal fins (Katona et al. 1979). We cross-referenced with the Southeast Alaska Humpback 

Whale Catalog (Straley and Gabriele 2000). This catalog included all whale sightings 

through 2012 and continues to be updated with more recent observations (Straley and 

Gabriele, unpublished data).

Whales repeatedly feeding on hatchery-released juvenile salmon were identified and 

targeted for continued biological sampling throughout the season to monitor changes in 

stable isotope signatures. Samples from whales not observed feeding on hatchery-released 

juvenile salmon (termed “other whales”) were used as the basis for comparing stable 

isotope values. For all whales observed, we used a Barnett crossbow (68 kg draw weight) 

to collect shallow (i.e., 40 mm in length and 7 mm in diameter) tissue samples from the flank 

of the animal. Photographs of both the flukes and the dorsal fin were taken to confirm the 

identity of each whale sampled. This research was conducted under National Marine 

Fisheries Service (NMFS) permit 14122 and 18529, University of Alaska Institutional Animal
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Care and Use Committee (IACUC) permit 907314-3, and State of Alaska Department of 

Fish and Game permit CF-18-049.

1.3.2 Sample Preparation and Stable Isotope Analysis

Cetacean skin is made up of multiple layers and it has been suggested that directed 

sampling of specific layers allow for more nuanced analysis of dietary trends (Busquets- 

Vass et al. 2017; Wild et al. 2018). For this reason, we subsampled the “inner” and “outer” 

layer to assess potential differences between more recent diets (inner) and diets from 

earlier time periods (outer) (Fig. 1.2). Samples were prepared for stable isotope analysis 

through a multi-step process that included subsampling, oven drying, lipid extraction, and 

homogenization. We separated the skin from the blubber and cut it into three equally thick 

layers (Fig. 1.2). All subsamples were oven-dried for 24 hours at 60°C. Lipids tend to be 

depleted in 13C relative to 12C compared with other tissues (e.g., muscle), causing samples 

with high lipid content to show relatively low d13C values (Deniro and Epstein 1978). 

Therefore, to account for differences in lipid content, samples were lipid-extracted prior to 

analysis. Duplicate samples were run without lipid extraction as a check for any changes to 

d15N values caused by the process (Logan and Lutcavage 2008; Murry et al. 2006; Post et 

al. 2007; Ryan et al. 2012). Lipid extraction was carried out by soaking the tissue in a 2:1 

chloroform-methanol solution for 20 min in an ultrasonic bath (Folch et al. 1956; Logan et al. 

2008; Sweeting et al. 2006). This process was repeated three times. Following lipid 

extraction, we oven-dried samples at 60°C for 24 hours to evaporate off any remaining 

solution. Dried, lipid-extracted and non-lipid-extracted samples were ground into a powder 

to ensure homogenization using a Wig-L-Bug Grinding Mill (International Crystal 

Laboratories). Whole prey samples were ground with a mortar and pestle. Aliquots of 
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homogenized whale and prey samples (0.2-0.4 mg) were sealed in 5 mm tin capsules and 

sent to the University of Alaska Fairbanks, Alaska Stable Isotope Facility (ASIF). ASIF used 

an elemental analyzer attached to an isotope ratio mass spectrometer (EA-IRMS) for bulk 

carbon and nitrogen isotope analyses and results are expressed in the d notation, which 

indicates the ratio of the heavy isotope to the light isotope (relative to a standard). We used 

standard d notation, defined as: 

where X is 15N or 13C and R is the corresponding ratio of 15N/14N or 13C/12C. Stable isotope 

ratios are expressed in units of parts per million, ‘per mil' (‰) relative to international 

standards (Vienna Pee Dee Belemnite for carbon and atmospheric nitrogen for nitrogen).

Analytical precision was ±0.2‰ for both δ13C values and δ15N values, which was determined 

by analyzing a peptone standard throughout the sample run.

We used multivariate analyses to test for differences in stable isotope signatures 

between hatchery-associated whales and other whales (‘vegan' package in R; Oksanen et 

al. 2019). We calculated Bray-Curtis dissimilarity indices (Clarke et al. 1993) on the raw 

isotopic data. We then used a permutational multivariate analysis of variance 

(PERMANOVA) with Type III sums of squares (Number of permutations = 9999; α = 0.1) to 

test for differences between groups. Any factor that produced a p-value > 0.1 was not 

included in the final model. We also calculated trophic level (TL) for each individual and 

group using the following equation: 

where 2 is the trophic position of the primary consumer (i.e., mussels collected from study 

area, both years) and 2.4 is the average enrichment factor per trophic level (Hobson et al.

1994).
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1.3.3 Diet Compositions

We estimated diet compositions using the Bayesian stable isotope mixing model SIMMR 

(Stable Isotope Mixing Models in R; Parnell et al. 2010). We elected to use SIMMR over 

other mixing models because it allows for multiple dietary sources as well as associated 

uncertainties in both isotopic values and enrichment factors (Parnell et al. 2010); however, 

like any other mixing model, they are sensitive to lack of data from unsampled prey times 

(Phillips et al. 2014). Bayesian mixing models tend to generate more robust results than 

other modeling approaches and display diet compositions as probability distributions (Inger 

and Bearhop 2008; Moore and Semmens 2008; Parnell et al. 2010). We used stable 

isotope ratios for each whale and means with standard deviations for each prey species or 

group as input data. Currently, there are few available estimates for enrichment factors of 

d13C and d15N values pertaining to marine mammals, and no published enrichment factors 

specific to humpback whales (Witteveen 2008). Thus, we used enrichment factor estimates 

from Witteveen et al. (2012): 0.9 ‰ for d13C values and 3.2 ‰ for d15N values. We used 

mixing models (posterior probabilities from four chains of length after a burn-in of 10,000 

iterations and thinned by subsampling every hundredth iteration) to estimate diet 

compositions for all hatchery-associated whales, all other whales, and each individual 

hatchery-associated whale (whale # 2227, # 2571, and # 2360), by year (2016 and 2017) 

and layer (inner and outer). In both years, hatchery-associated and other whale samples 

were divided into biweekly periods after the first release (Table S1.2) for comparison of the 

proportional consumption of hatchery salmon over time. We did not test for differences over 

time due to limited sample size within biweekly periods.
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1.3.4 Temporal Shifts in d13C

Salmon were released from Hidden Falls Hatchery on known dates, so we were able to 

use releases as a semi-controlled feeding experiment to analyze incorporation and turnover 

rate. We hypothesized that consumption of hatchery-released juvenile salmon would result 

in a reduction of d13C for hatchery-associated whales through time. We used generalized 

additive models (GAMs; ‘mgcv' package in R, Wood 2011) with a Gaussian distribution and 

identity link to model changes in d13C values within the inner and outer layers. d13C values 

were modeled separately for each hatchery-associated whale (to account for individual 

foraging patterns) as a function of year and the number of days following hatchery release 

(‘post-release days'). We treated year as a factor. The amount of smoothing for our 

nonparametric variable (i.e., number of post-release days) was determined by generalized 

cross validation (GCV) (Wood 2006) and limited to eight knots to allow for complex changes 

in d13C values through time without overfitting. The full model formulation was:

15

where B is year and C is the smoothing function for the number of post release days (DE) for 

each sample. F),G denotes residual error.

1.4 Results

A total of 15 and 30 individual humpback whales were sampled in 2016 and 2017, 

respectively. In both years, three whales (#2227, #2571, and #2360) repeatedly foraged on 

juvenile chum and coho salmon near Hidden Falls Hatchery. We biopsied 12 other whales 

in 2016 and 27 other whales in 2017. Prey samples were comprised of juvenile hatchery- 

released chum salmon (n=99), juvenile hatchery-released coho salmon (n=27), wild juvenile 

salmon (n=19), Pacific herring (n=30), and krill (n=3) (Table 1.1; Table S1). Hatchery-



released juvenile salmon were found in Warm Springs Bay, Takatz Bay, Kasnyku Bay, and 

Kelp Bay in 2016 and Kasnyku Bay and Kelp Bay in 2017. Furthermore, otolith analysis (n = 

103 juvenile salmon) revealed that wild-origin juvenile salmon coincided with large 

aggregations of hatchery-released juvenile salmon (83% of fish had thermal markings) 

being targeted by humpback whales. Coho salmon are not thermal-marked at Hidden Falls 

Hatchery so were not included in otolith analysis. Due to limited prey sampling in 2016, we 

used prey information from both years (2016 and 2017) as input data for 2016 mixing 

models.

1.4.1 Hatchery-Associated vs. Other Whales

We found no difference in mean d13C values between hatchery and other whales, but we 

did find that tissue from hatchery-associated whales exhibited statistically higher mean d15N 

than those of other whales (Table 1.2; Fig. 1.4). The mean trophic level for hatchery- 

associated whales was 5.3 ± 0.4 SD (inner skin layer) and 5.5 ± 0.6 SD (outer skin layer).

Other whales showed a mean trophic level of 5.0 ± 0.3 SD (inner) and 5.0 ± 0.3 SD (outer) 

(Table 1.2). Results from the PERMANOVA showed a significant effect of whale type on 

stable isotope signatures in the inner (F1,56 = 8.410, R2 = 0.131, p = 0.002) and outer (F1,54 = 

12.781, R2 = 0.191, p < 0.001) layers, but no effect of year.

Inferred diets of both hatchery-associated and other whales were comprised of a large 

portion of hatchery salmon, regardless of when the sample was collected. Notably, hatchery 

salmon were estimated in the diets of all whales prior to Hidden Falls Hatchery's first 

release (i.e., when no juvenile hatchery-released salmon were available). Mixing model 

results for 2016 showed no trends through time, reflecting low variability in diet 

compositions (Fig. 1.3). In 2017, mixing model results showed some shifts in diet 
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composition for both hatchery-associated and other whales, reflecting some degree of 

variability in diet composition over time. Krill surpassed hatchery salmon consumption 

proportion in the inner layer of hatchery-associated whales for the 58-71 post-release day 

timeframe (n=1) and in the inner layer of other whales for the 16-29 post-release day period 

(n=9). In both years, other whales showed hatchery salmon in their diets before any Hidden 

Falls Hatchery releases. We were unsuccessful in sampling hatchery-associated whales 

before the day of first release in either year. Hatchery-associated whales showed a large 

contribution of hatchery salmon within the first biweekly period (1-15 d) in both 2016 and 

2017.

1.4.2 Foraging Patterns of Hatchery-Associated Whales

In 2016, we observed hatchery-associated whale #2227 in Warm Springs Bay, two 

hatchery release sites (Takatz and Kasnyku bays), and Kelp Bay (n = 11 d; Table S1.3). 

This whale fed at hatchery release sites between 9 and 37 days post-release. However, we 

recorded this individual feeding on schools of juvenile salmon (within the broader study 

area) until 55 days post-release. All surface feeding observations (7 d) involved foraging on 

juvenile salmon. No notable increase or decrease was shown in the proportions of prey 

consumption for hatchery salmon (Fig. 1.6). In 2017, we observed hatchery-associated 

whale #2227 in Takatz Bay, Kasnyku Bay (release site), and Kelp Bay (n = 9 d; Table S1.2). 

The whale was found foraging at release sites between 7 and 14 days post-release. The 

whale left the study area 16 days post-release and was not observed again. The biopsy 

tissue sample from 7 days post-release was not an ideal sample (perpendicular penetration 

into whale skin) so the inner layer could not be analyzed. We found no temporal patterns in 

the proportions of hatchery salmon; however, in both years whale #2227 was feeding at a 
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higher trophic level than the other two hatchery-associated whales reflecting more 

consumption of hatchery coho salmon and/or Pacific herring.

Hatchery-associated whale #2571 was observed in Warm Springs Bay, Takatz Bay 

(release site), Kasnyku Bay (release site), and Kelp Bay in 2016 (n = 14 d; Table S1.4). 

This whale fed at hatchery releases sites between 18 days and 37 days post-release but 

was recorded feeding on schools of juvenile salmon within the study area 65 days post­

release. All surface feeding events involved juvenile salmon. The outer layer exhibited 

variation in proportions of coho salmon, with a slight increase through time. There was no 

notable trend in the proportions of hatchery salmon from the inner or outer layer of the skin 

(Fig. 7). In 2017, hatchery-associated whale #2571 was only observed in Kelp Bay (n = 16 

days). The whale was first observed feeding on juvenile hatchery salmon at 12 days post­

release and last observed at 22 days post-release (Table S3). Half of all surface feeding 

targeted juvenile salmon. In the inner layer, there were spikes in proportions of krill 

consumed on 22 and 70 days post-release, which appeared to drive the greatest shifts in 

diet.

Finally, we observed hatchery-associated whale #2360 in Warm Springs Bay, Takatz 

Bay (release site), Kasnyku Bay (release site), and Kelp Bay in 2016 (n = 15 d; Table S1.5). 

This whale was observed feeding at release sites from 9 days to 20 days post-release and 

seen feeding on schools of juvenile salmon until 58 days post-release. All surface feeding 

events targeted juvenile salmon. We found no notable trend in the proportions of prey 

consumption in the inner or outer layer (Fig. 9; Table 2). In 2017, hatchery-associated whale 

#2360 was observed in Kasnyku Bay (release site), Kelp Bay, and outside the study area in 

Wilson Cove (east side of Chatham Strait) (n = 13 d; Table S1.4). This whale fed on juvenile 

hatchery salmon between 14 and 37 days post-release. After 37 days post-release, 

hatchery-associated whale #2360 shifted from solo bubble-net feeding to group foraging on 
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herring. The outer layer showed a substantial amount of variation, primarily due to a larger 

proportion of krill reflected in the first sample (25 days post-release).

1.4.3 Isotopic Incorporation Rate

Hatchery-associated whale #2227 was sampled 4 times in both 2016 and 2017 over 47 

and 11 days, respectively. We found no significant effect of year or number of post-release 

days on the d13C signature (Table 1.4). Whale #2571 was sampled 5 times over 48 days in 

2016 and 6 samples were collected over 84 days in 2017. Of all hatchery-associated 

whales, whale #2571 was sampled over the longest period, with a sample collected at 85 

days post-release. We found a significant effect of the number of post-release days on the 

d13C values in the inner layer and an effect of year in the outer layer (Table 1.5; Fig. 1.8). 

Whale #2360 was sampled 4 times in both 2016 and 2017 over 37 and 49 days, 

respectively. We found a significant effect of year on the d13C values in the inner layer for 

hatchery-associated whale #2360 (Table 1.6; Fig. 1.10).

1.5 Discussion

Stable nitrogen isotope signatures differed between hatchery-associated whales and 

other whales not observed feeding at release sites, suggesting disparate foraging strategies 

between the two groups. This study also demonstrates the unique ability to incorporate 

new, anthropogenically produced prey by whales. Although our study could not definitively 

estimate the contribution of hatchery-release juvenile salmon to the diets of humpback 

whales, pairing direct observations with stable isotope analysis suggests some degree of 

individual specialization among humpback-associated whales, which are largely considered 

generalist predators. We identified three hatchery-associated whales (#2227, #2571, and
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#2360) that regularly fed on hatchery-released juvenile salmon in Southeast Alaska (2016 

to 2017). These three whales exhibited significantly higher trophic levels than other 

humpback whales found in the study area, revealing differences in prey selectivity between 

the two groups (Witteveen et al. 2011) even with no obvious differences in foraging habitat. 

This work highlights isotopic differences, persisting over a two-year period, in diets as a 

result of varied foraging strategies of humpback whales.

Previous studies at Hidden Falls Hatchery have documented consumption of hatchery- 

released salmon by humpback whales at release sites, but the extent (i.e., number of 

whales, length of time, frequency, location of predation) to which humpback whales 

targeted wild or hatchery-released salmon after outmigration was not determined 

(Chenoweth et al. 2017). We found that as hatchery salmon move into surrounding bays 

(i.e., Warm Springs Bay and Kelp Bay) they school with wild salmon, and some whales 

continue to feed on salmon in these adjacent areas resulting in the consumption of both 

hatchery-reared and wild (chum and pink) juvenile salmon. The presence of wild juvenile 

pink and chum salmon in Warm Springs Bay, Takatz Bay, Kasnyku Bay, and Kelp Bay is 

consistent with species composition reports from local anadromous streams (ADFG 2019a).

1.5.1 Hatchery-associated vs. Other Whales

Hatchery-associated whales #2227, #2571, and #2360 were repeatedly observed 

feeding on hatchery-released juvenile salmon from Warm Springs Bay to Kelp Bay. We 

found a difference in diet between these whales and other whales in Chatham Strait based 

on their stable isotope composition. However, we observed no concerted temporal shift in 

stable isotope signatures of hatchery-associated whales that would reflect hatchery salmon 

isotopically becoming incorporated into their skin. Stable isotope values indicative of higher 

trophic levels of the three hatchery-associated whales were present in the whales' skin 
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before, during, and after releases, indicating a cause that seem to be independent of 

consuming juvenile salmon from Hidden Falls Hatchery. Additionally, our mixing models 

inferred the presence of hatchery salmon in the diets of all whales during the first week of 

releases and, in some cases, before releases even occurred. The inferred proportion of 

hatchery salmon in the diets was never below 22.5% throughout the sampling period. This 

suggests that foraging behavior differentiates hatchery-associated whales from other 

whales, but that differences in diets were not uniquely due to consumption of hatchery- 

reared salmon. Different stable isotope ratios were evident in both the inner and outer 

layers of skin, indicating an isotopic distinction at a broader temporal scales (Busquets-Vass 

et al. 2017; Wild et al. 2018).

In nature, generalist populations are often composed of ecologically diverse individuals 

that use different subsets of available resources (Hoelzel et al. 1989), which can lead to 

specialization at the individual level (Bolnick et al. 2003). Intraspecific competition and 

environmental fluctuation are among the many causes of individual specialization. In 2006, 

the population of North Pacific humpback whales was well over 21,800 individuals (Barlow 

et al. 2011) and the annual population growth rate was 4 to 7% (Calambokidis et al. 2008). 

This increase in population size could have prompted feeding on hatchery-released juvenile 

salmon as a means of reducing the negative effects of intraspecific competition. 

Additionally, climate change has impacted the North Pacific (Di Lorenzo and Mantua 2016), 

influencing prey availability. Decreased access to preferred prey may have also triggered 

these individuals to expand their prey repertoire. A consumer population's response to 

spatial and temporal variation in the abundance and quality of prey will vary greatly with the 

degree of individual variation in diet (Pintor and Byers 2015). Another plausible explanation 

for differences in stable isotope ratios and trophic levels is that hatchery-associated whales 

simply demonstrate more exploratory behavior than other whales (Pintor and Byers 2015).
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A greater tendency to exploit new resources would explain location and incorporation of 

hatchery-released salmon into their diets. Regardless of the mechanism, our direct 

observations and stable isotope results suggest that individual humpback whales exhibit 

specialized foraging strategies that differentiate their diets from one another. We found that 

hatchery-associated whales were consuming higher trophic level prey (i.e., consuming more 

fish). Either hatchery-associated whales have recently developed the skills necessary to 

feed on hatchery-released salmon, allowing for greater specialization on forage fishes 

during early spring, or hatchery-associated whales already were forage fish specialists, 

which facilitated the consumption of hatchery-released salmon. During late spring and early 

summer, other whales seemed to feed primarily on krill (i.e., a lower trophic level prey). 

Such behavior may have narrowed their focus or foraging areas, thereby preventing the 

utilization of hatchery salmon when highly abundant.

Half-life turnover rates for bottlenose dolphins (measurable in the inner but not the outer 

layer) are 24.2 ± 8.2 d for carbon and 47.6 ± 19 d for nitrogen. With this, we hypothesize 

that tissue samples from humpback whales would reflect foraging activity from at minimum 

one month prior. It is reasonable to believe that humpback whales would have turnover 

rates that are similar (or longer) than bottlenose dolphins (Gimenez et al. 2016). However, 

the lack of measurable change in stable isotope ratios from hatchery-associated whale skin 

provided no indicator with which to estimate the time period represented. Thus, it is 

completely possible that all samples collected represented a period before any hatchery 

salmon consumption. Continued biopsy sampling of these whales, throughout their 

northward migration, would certainly help elucidate turnover rates for humpback whales.

That the stable isotope results suggested humpback whales had consumed hatchery- 

released salmon before salmon were in our study area is plausible, but seems unlikely. Port 

Armstrong Hatchery (operated by Armstrong-Keta, Inc.) is approximately 104 km south of 
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Kasnyku Bay. Port Armstrong released approximately 2.9 x 108 juvenile salmon (pink and 

chum) in the spring of 2016 and 6.7 x 107 (coho, chum, and pink) juvenile salmon in the 

spring of 2017 (ADFG 2019b), weeks prior to releases conducted by Hidden Falls Hatchery. 

These earlier releases and more southern locations may have provided an opportunity for 

whales to feed on hatchery-released salmon before entering our study area. However, the 

substantial amount of hatchery salmon estimated in the diets of all whales does not seem 

probable since only three were observed to be a ‘hatchery salmon specialist' during the 

releases at Hidden Falls Hatchery and given the local, ephemeral availability of hatchery 

salmon. We believe the most logical explanation for a consistent “hatchery salmon” 

signature in the tissues of all whales is that we were possibly missing a wild prey source(s) 

with similar isotopic signatures to the hatchery salmon. Not accounting for all major prey 

items is problematic when using mixing models to estimate diet compositions. Doing so can 

bias model results in favor of known prey because proportions must sum to one (Phillips et 

al. 2014). The possibility of hatchery salmon having a similar isotopic composition to an 

unknown prey taxon makes it difficult to tease out the proportional contributions of hatchery 

salmon alone. Additionally, without specific incorporation rates for humpback whale skin, we 

cannot identify the specific time periods the stable isotope data represents.

Identifying all major prey sources was difficult due to little information on where 

humpback whales were feeding before entering our study area. There is also limited 

information about the movements of humpback whales in Southeast Alaska. Satellite- 

monitored radio tags have shown equal probability that observed whales could have 

entered our study area from the north or south (Mate et al. 2007; Witteveen et al. 2011). 

Mean d15N and d13C values from our hatchery-associated whales are closest to whales 

occupying the northern Gulf of Alaska (-17.6‰ ± 0.1, 13.5‰ ± 0.1; Witteveen et al. 2009) 

23



and northern British Columbia (-17.6‰ ± 0.1, 12.9‰ ± 0.1; Witteveen et al. 2009), further 

supporting the idea that whales could have traveled into our study area through a northern 

or southern passage. Stable isotopic signatures of other whales were similar to those 

residing in Southeast Alaska (-17.1‰ ± 0.1, 12.7‰ ± 0.1; Witteveen et al. 2009), providing 

little information on previous foraging locations. Without fully understanding the location of 

individual whales before they moved into our given study area, we cannot speculate about 

feeding areas or prey sources before they were first observed. If we assume that whales 

observed as part of this study were migrating northward from their breeding grounds in 

Hawai'i, we could infer that the unknown prey source was potentially offshore krill or some 

species of forage fish. Offshore prey items tend to have low d13C values, which could 

potentially mask the stable isotopic signature of hatchery salmon, and may account for the 

missing source in our mixing models (Burton and Koch 1999; Hobson et al. 1994; Miller et 

al. 2010). Prey surveys in Southeast Alaska during late winter and early spring would fill this 

informational void.

1.5.2 Individual Specialization among Hatchery-Associated Whales

We analyzed the stable isotopic composition of humpback whale skin in order to 

characterize variation within and among individual humpback whale diets in Southeast 

Alaska. Minimal temporal variability in stable isotopic composition suggested relatively 

constant diets through the study period or that skin incorporation rates are longer than our 

sampling period. However, observations of individual hatchery-associated whales illustrated 

that, even though they share a preference for feeding on hatchery-released juvenile salmon, 

these whales vary in the degree to which they consume this unique prey source. Each 

whale arrived at the study area at different times, exhibited different proportions of prey, and 
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took different approaches on where (release site or surrounding area) they consumed 

hatchery-reared juvenile salmon.

Of all three hatchery-associated whales, whale #2227 was observed the most at release 

sites, spending 45% of all observation days at primary release sites. However, in 2017 there 

was a short observation period of this whale in the study area during the release period, 

resulting in a relatively short sampling period. This is potentially why we did not see much 

variation in this animal's diet and there was no evident diet composition shift due to the 

hatchery-released salmon consumed. Conversely, whale #2571 was only observed feeding 

at release sites during 10% of all observations. All observations from 2017 took place in 

Kelp Bay, where large schools of juvenile salmon (hatchery and wild) were consistently 

present. Whale #2571 appeared to forage on hatchery-released salmon while in adjacent 

bays and less so at source locations. However, this whales site residency was the highest 

of all three whales potentially allowing for more consistent consumption of hatchery- 

released salmon over the study period and resulting in more variation in the whale's diet 

composition. Whale #2360 was the only whale observed to switch from solo bubble-net 

feeding on juvenile salmon to group bubble-net feeding on Pacific herring. This behavior 

change in Whale #2360 is consistent with the isotopic evidence that hatchery-associated 

whales are forage fish specialist.

1.5.3 Isotopic Incorporation Rate

We attribute variable stable isotope results when measuring for incorporation and 

turnover rate to differences in sampling time periods among individuals. We found no effect 

of days post-release on the d13C signatures for whale #2227, likely resulting from short 

observation periods (number of days post-release) in both years. Whale #2360 was 
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sampled over a much longer time period (45 d post-release in 2016 and 73 d post-release 

in 2017) and displayed a significant effect of year within the inner layer. Whale #2571 had 

the longest sampling period (85 d post-release in 2017) and was the only whale to show a 

significant effect of post-release days (in the inner layer). Significant d13C-increase occurred 

between 74 and 85 days post-release. The only published value for humpback whale skin 

incorporation rate suggests 7 to 14 days (Todd 1997), however there are many 

discrepancies with this study (e.g., based on anecdotal foraging behavior) and our more 

rigorous method of repeat sampling the same individual in conjunction with prey data 

provides a better estimation. Additionally, turnover rate from 74 to 85 days would be closer 

to turnover rates estimated by Hicks et al. (1985) and St. Aubin et al. (1990): 73 days for 

bottlenose dolphins and 70-75 days for beluga whales (70 to 75 d), respectively. Although 

we sampled whale #2360 on 73 days post-release, the whale did not enter the study area 

until 14 days post-release. Thus, this whale was observed to only have up to 59 days to 

consume hatchery-release salmon, whereas whale #2571 was in the study area and 

presumable able to consume hatchery-reared salmon within the study area for a full 85 

days. With this, we conclude that previous incorporation rates for humpback whales (7 to14 

d; Todd 1997) were vastly underestimated. We believe that the significant d13C-increase 

from whale #2571 between 74 to 85 days is a much closer approximation of incorporation 

rate for humpback whale skin; however, continued tissue collection beyond this timeframe 

would provide corroboration.

1.5.4 Conclusions

Three whales were found to incorporate hatchery-released juvenile salmon into their 

diets in Chatham Strait, though individuals varied in the degree to which they consumed this 
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particular prey type. Even though we were not able to provide an estimate of the proportion 

contribution of hatchery salmon to these individuals' diet, we were able to observe and 

document a substantial amount of predation on salmon occurring beyond the release sites. 

This provides more insight into the impact this predator is having on this important marine 

resource. Overall, we found that hatchery-associated whales fed at higher trophic levels 

than other whales in the area, suggesting some level of specialization in foraging behavior. 

The hatchery-associated whale that was sampled over the longest time period displayed an 

isotopic shift, potentially indicating a stable isotope incorporation rate of 74 to 85 days in 

humpback whale skin. Continued sampling of the same individual (and multiple individuals) 

over a broader temporal scale would increase our confidence in this effort and provide a 

better understanding about the temporal movement of stable isotopes through cetacean 

tissue. Our direct observations of forage behavior paired with repeated sampling provided 

further insight into the foraging ecology of humpback whales.
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1.8 Figures

Figure 1.1. Map of study site (Southeast Alaska, 2016 to 2017). Red dots indicate release 
sites for Hidden Falls Hatchery.
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Figure 1.2. Diagram for sample processing of humpback whale biopsies. A: Complete 
biopsy sample, illustrating distinct skin and blubber components; B: Full skin sample, 
separated into outer, middle, and inner layers and subsamples for each layer (red lines 
denote locations where samples were sectioned), C: Subsampling scheme for stable 
isotope analysis, illustrating individual layers and sample types (i.e., pre- and post-lipid 
extraction).
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Figure 1.3. Proportions of prey estimated from Bayesian mixing models, by year (A: 2016 
and B: 2017), layer (left: inner; right: outer), whale type (i.e., hatchery-associated, ‘hatchery' 
and other whales), and biweekly period. White numbers represent the number of whales (n) 
for each time period. “R” denotes time periods with active releases.
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Figure 1.4. Bi-plot showing δ13C and δ15N values from the inner (A) and outer (B) layers of 
all humpback whale skin samples (Southeast Alaska, 2016 and 2017), by whale type 
(hatchery-associated, triangles; other, circles). Isotopic values for prey sources are also 
shown adjusted with trophic enrichment factors. Ellipses represent 95% confidence 
intervals.
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Figure 1.5. Stable isotope biplots (above) and proportions of prey consumed (as estimated 
from Bayesian mixing models; below) for hatchery-associated whale #2227, by year (A: 
2016; B: 2017) and skin layer (i.e., inner and outer). Numbers in biplots indicate the number 
of post-release days. “R” represents the active hatchery release window for each year. Prey 
sources are adjusted with trophic enrichment factors.
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Figure 1.6. Stable isotope biplots (above) and proportions of prey consumed (as estimated 
from Bayesian mixing models; below) for hatchery-associated whale #2571, by year (A: 
2016; B: 2017) and skin layer (i.e., inner and outer). Numbers in biplots indicate the number 
of post-release days. “R” represents the active hatchery release window for each year. Prey 
sources are adjusted with trophic enrichment factors.
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Figure 1.7. Partial effects of year and number of post-release days (i.e., Days After) on d13C 
for hatchery-associated whale #2571. Generalized additive model results pertain to the 
inner (A) and outer (B) layers of the skin. There was a significant effect of number of post­
released days in inner layer and year in the outer layer. Black tick marks denote the timing 
of each biopsy.
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Figure 1.8. Stable isotope biplots (above) and proportions of prey consumed (as estimated 
from Bayesian mixing models; below) for hatchery-associated whale #2360, by year (A: 
2016; B: 2017) and skin layer (i.e., inner and outer). Numbers in biplots indicate the number 
of post-release days. “R” represents the active hatchery release window for each year. Prey 
sources are adjusted with trophic enrichment factors.
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Figure 1.9. Partial effects of year and number of post-release days (i.e., Days After) on d13C 
for hatchery-associated whale #2360. Generalized additive model results pertain to the 
inner (A) and outer (B) layers of the skin. There was a significant effect of year in the inner 
layer. Black tick marks denote the timing of each biopsy.
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1.9 Tables

Table 1.1. Sample size and mean (± standard deviation) stable isotope ratios (‰) for each 
prey group sampled in Southeast Alaska (2016 to 2017).

Prey Group n δ13C ± SD ( ‰) d15N ± SD (‰
Hatchery Chum Salmon (Oncorhynchus keta) 99 -19.1 ± 0.8 10.4 ± 0.7
Hatchery Coho Salmon (Oncorhynchus kisutch) 27 -19.1 ± 0.4 12.0 ± 0.4
Wild Salmon (Oncorhynchus spp.) 19 -18.1± 0.5 9.5 ± 0.4
Pacific Herring (Clupea pallasii) 30 -17.6 ± 0.5 11.2 ± 0.6
Krill (Euphausiacea spp.) 3 -17.6± 0.8 7.9 ± 0.4
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48

A)

B)

Table 1.2. Sample size (n), mean (± standard deviation) stable isotope ratios (‰), mean (± standard deviation) trophic level 
(TL), and range of hatchery salmon in the diets of humpback whales, by year, group (i.e., other and hatchery), and skin layer 
(A: inner; B: outer). Estimates are also shown for individual hatchery-associated whales #2227, 2571, and 2360.

Other

Year n d13C d15N TL Prop. of Hatc
Min

hery Salmon
Max

both 41 -17.7 ± 0.4 12.5 ± 0.7 5.0 ± 0.3 0.343 ± 0.3 0.413 ± 0.3

Hatchery both 26 -17.7 ± 0.2 13.3 ± 1.0 5.3 ± 0.4 0.331 ± 0.2 0.437 ± 0.3
2227 2016 4 -17.3 ± 0.1 14.3 ± 0.4 5.7 ± 0.2 0.435 ± 0.3 0.509 ± 0.3

2017 3 -17.4 ± 0.2 14.9 ± 0.2 6.0 ± 0.1 0.534 ± 0.4 0.614 ± 0.4
2571 2016 5 -17.7 ± 0.1 12.7 ± 0.1 5.1 ± 0.0 0.333 ± 0.2 0.377 ± 0.2

2017 6 -17.7 ± 0.2 12.7 ± 1.4 5.1 ± 0.6 0.093 ± 0.1 0.522 ± 0.3
2360 2016 4 -17.9 ± 0.1 13.0 ± 0.2 5.2 ± 0.1 0.357 ± 0.2 0.457 ± 0.3

2017 4 -17.7 ± 0.1 13.1 ± 0.3 5.2 ± 0.1 0.334 ± 0.2 0.437 ± 0.3

Other both 39 -17.7 ± 0.5 12.6 ± 0.7 5.0 ± 0.3 0.355 ± 0.3 0.428 ± 0.3

Hatchery both 27 -17.6 ± 0.3 13.6 ± 1.3 5.5 ± 0.6 0.401 ± 0.3 0.471 ± 0.3
2227 2016 4 -17.3 ± 0.4 14.8 ± 0.2 5.9 ± 0.1 0.473 ± 0.4 0.691 ± 0.4

2017 4 -17.3 ± 0.1 6.1 ± 0.1 6.1 ± 0.1 0.554 ± 0.4 0.628 ± 0.4
2571 2016 5 -17.7 ± 0.2 13.2 ± 0.2 5.3 ± 0.1 0.375 ± 0.3 0.463 ± 0.3

2017 6 -17.6 ± 0.2 13.9 ± 0.6 5.6 ± 0.3 0.464 ± 0.3 0.586 ± 0.3
2360 2016 4 -17.9 ± 0.1 13.1 ± 0.2 5.2 ± 0.1 0.396 ± 0.3 0.437 ± 0.3

2017 4 -17.6 ± 0.2 12.0 ± 2.4 4.8 ± 1.0 0.037 ± 0.0 0.452 ± 0.3



Table 1.3. Results from generalized additive models used to quantify effects of year and number of post-release days on d13C 
for samples obtained from both inner and outer layers of the skin from hatchery-associated whale #2227. Parameter estimates, 
standard errors (SE), t values, and p-values are indicated for factors (i.e., year and whale type). Effective degrees of freedom 
(edf), Ref.df, F values, and p-values are shown for the smoothed variable (i.e., number of post-release [PR] days). Deviance 
explained (Dev., %), adjusted R2, and generalized cross validation (GCV) scores are also noted for each model. Non-significant 
terms (a = 0.1) are grayed out.

Model Est. or edf SE or Ref.df t or F p Dev. (%) adj. R2 GCV

Inner Layer 39.7 0.096 0.031
Intercept - 17.21 0.12 - 141.86 < 0.001

Year - 0.20 0.13 - 1.57 0.191
* No. PR Days - 0.0045 0.0036 - 1.25 0.278

Outer Layer 12.6 - 0.224 0.14
Intercept - 17.54 0.27 - 63.99 < 0.001

Year 0.15 0.27 0.54 0.611
* No. PR Days 0.0069 0.0081 0.85 0.43549



Table 1.4. Results from generalized additive models used to quantify effects of year and number of post-release days on d13C 
for samples obtained from both inner and outer layers of the skin from hatchery-associated whale #2571. Parameter estimates, 
standard errors (SE), t values, and p-values are indicated for factors (i.e., year and whale type). Effective degrees of freedom 
(edf), Ref.df, F values, and p-values are shown for the smoothed variable (i.e., number of post-release [PR] days). Deviance 
explained (Dev., %), adjusted R2, and generalized cross validation (GCV) scores are also noted for each model. Non-significant 
terms (a = 0.1) are grayed out.

Model Est. or edf SE or Ref.df t or F p Dev. (%) adj. R2 GCV

Inner Layer 91.0 0.772 0.015
Intercept - 17.74 0.038 - 472.35 < 0.001

Year 0.040 0.056 0.72 0.515
No. PR Days 5.05 5.71 6.32 0.051

Outer Layer 71.8 0.559 0.024
Intercept - 17.80 0.058 - 305.35 < 0.001

Year 0.28 0.084 3.33 0.0145
No. PR Days 2.62 3.25 2.93 0.111
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Table 1.5. Results from generalized additive models used to quantify effects of year and number of post-release days on d13C 
for samples obtained from both inner and outer layers of the skin from hatchery-associated whale #2360. Parameter estimates, 
standard errors (SE), t values, and p-values are indicated for factors (i.e., year and whale type). Effective degrees of freedom 
(edf), Ref.df, F values, and p-values are shown for the smoothed variable (i.e., number of post-release [PR] days). Deviance 
explained (Dev., %), adjusted R2, and generalized cross validation (GCV) scores are also noted for each model. Non-significant 
terms (a = 0.1) are grayed out.

Model Est. or edf SE or Ref.df t or F p Dev. (%) adj. R2 GCV

Inner Layer 83.8 0.773 0.0075
Intercept - 17.89 0.051 - 349.26 < 0.001

Year 0.26 0.053 4.80 0.0049
No. PR Days - 0.00079 0.0015 - 0.53 0.617

Outer Layer 65.7 0.52 0.034
Intercept - 18.05 0.11 - 165.34 < 0.001

Year 0.21 0.11 1.88 0.118
No. PR Days 0.0045 0.0032 1.43 0.21351



1.10 Supplemental Tables

Table S1.1. Numbers of hatchery salmon released and whales observed for each biweekly period (A: 2016; B: 2017). Total 
number of fish released includes both chum and coho hatchery-released salmon.

A)

Total fish released: 90,613,267

Biweekly Period Start Date End Date No. Fish Released Hatchery Whales (n) Other Whales (n)
Before Releases - 4/24/16 - 0 2

Week 1 & 2 4/25/16 5/8/16 62,973,648 2 0
Week 3 & 4 5/9/16 5/22/16 27,639,619 2 3
Week 5 & 6 5/23/16 6/5/16 - 2 0
Week 7 & 8 6/6/16 6/19/16 - 3 4

Week 9 & 10 6/20/16 7/3/16 - 1 3

52 B)

Total fish released: 68,750,169

Biweekly Period Start Date End Date No. Fish Released Hatchery Whales (n) Other Whales (n)
Before Releases - 5/3/17 - 0 4

Week 1 & 2 5/4/17 5/17/17 55,636,130 2 3
Week 3 & 4 5/18/17 5/31/17 8,451,591 2 9
Week 5 & 6 6/1/17 6/14/17 4,662,448 1 3
Week 7 & 8 6/15/17 6/28/17 - 1 0

Week 9 & 10 6/29/17 7/12/17 - 1 2
Week 11 & 12 7/13/17 7/27/17 - 2 6



Table S1.2. Individual observations of hatchery-associated whale #2227. Asterisks (*) 
indicate that the whale was at a hatchery release site. Behaviors include surface feeding 
(SF), milling (M), and traveling (T). Areas were Warm Springs Bay (WSB), Takatz Bay (TB), 
Kasnyku Bay (KA), and Kelp Bay (KB). Prey types observed were juvenile salmon (S), 
hatchery-released juvenile salmon (HS), wild origin juvenile salmon (WS), herring (H), krill 
(K). Parentheses indicate some degree of uncertainty in prey identification.

Date No. Post­
Release Days Behavior Prey

Prey
Identification

Method

Approx. Date of
Prey Sampling Area Biopsy

05/03/16 9 SF HS Visual 05/08 (HS ± WS) WSB X

05/08/16 14 T* - - - TB X

05/13/16 19 SF* HS Visual 05/19 (HS ± WS) KA

05/14/16 20 SF S Visual 05/08 (HS ± WS) WSB
05/19/16 25 T - - - KB

05/23/16 29 SF* S Visual 05/19 (HS ± WS) KA

05/24/16 30 M S Visual 05/08 (HS ± WS) WSB
05/25/16 31 M (K) Visual - KB X

05/28/16 34 SF S Visual 05/08 (HS ± WS) WSB
05/31/16 37 SF* S Visual 05/19 (HS ± WS) KA

06/18/16 55 SF S Visual - KB X

04/28/17 0 M - - - TB

05/05/17 2 T - - 05/25 (HS ± WS) KB X

05/06/17 3 M - - 05/25 (HS ± WS) KB

05/10/17 7 SF* S Visual 05/15 (HS ± S) KA X

05/11/17 8 T - - - TB X

05/15/17 12 T - - 05/15 (HS ± S) KA

05/16/17 13 SF* S Visual 05/16 (HS) KA X

05/17/17 14 SF* S Visual 05/16 (HS) KA

05/19/17 16 M* - Visual 05/16 (HS) KA
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Table S1.3. Individual observations of hatchery-associated whale #2571. Asterisks (*) 
indicate that the whale was at a hatchery release site. Behaviors include surface feeding 
(SF), milling (M), and traveling (T). Areas were Warm Springs Bay (WSB), Takatz Bay (TB), 
Kasnyku Bay (KA), and Kelp Bay (KB). Prey types observed were juvenile salmon (S), 
hatchery-released juvenile salmon (HS), wild origin juvenile salmon (WS), herring (H), krill 
(K). Parentheses indicate some degree of uncertainty in prey identification.

Date No. Post­
Release Days Behavior Prey

Prey
Identification

Method

Approx. Date of
Prey Sampling Area Biopsy

05/12/16 18 SF* HS Visual 05/19 (HS ± WS) KA X
05/13/16 19 SF* HS Visual - TB
05/21/16 27 M - - 05/08 (HS ± WS) WSB
05/22/16 28 SF S Visual 05/08 (HS ± WS) WSB
05/26/16 32 SF S Visual 05/08 (HS ± WS) WSB X
05/28/16 34 SF S Visual 05/08 (HS ± WS) WSB X
05/31/16 37 SF* HS Visual 05/19 (HS ± WS) KA
06/06/16 43 SF S Visual 05/08 (HS ± WS) WS
06/08/16 45 SF S Visual - KB X
06/18/16 55 SF S Visual - KB
06/21/16 58 SF S Visual - KB
06/22/16 59 SF S visual 05/08 (HS ± WS) WSB
06/27/16 64 M - - - KB
06/28/16 65 SF S Visual - KB X
04/23/17 0 M (K) Sounder 05/25 (HS ± WS) KB
05/04/17 1 T - - 05/25 (HS ± WS) KB
05/05/17 2 M - - 05/25 (HS ± WS) KB X
05/06/17 3 T - - 05/25 (HS ± WS) KB
05/15/17 12 SF HS Visual 05/25 (HS ± WS) KB
05/17/17 14 SF S Visual 05/25 (HS ± WS) KB
05/25/17 22 SF HS±WS Sampled 05/25 (HS ± WS) KB X
06/28/17 56 M - 06/28 (H) KB X
07/03/17 61 SF U 07/05 (H) KB
07/05/17 63 R - 07/05 (H) KB X
07/06/17 64 M - 07/05 (H) KB
07/08/17 66 M - 07/05 (H) KB
07/12/17 70 SF H Visual 07/14 (H) KB X
07/14/17 72 T - - 07/14 (H) KB
07/15/17 73 T - - 07/14 (H) KB
07/27/17 85 SF U - 07/14 (H) KB X
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Table S1.4. Individual observations of hatchery-associated whale #2360. Asterisks (*) 
indicate that the whale was at a hatchery release site. Behaviors include surface feeding 
(SF), milling (M), and traveling (T). Areas were Warm Springs Bay (WSB), Takatz Bay (TB), 
Kasnyku Bay (KA), and Kelp Bay (KB). Prey types observed were juvenile salmon (S), 
hatchery-released juvenile salmon (HS), wild origin juvenile salmon (WS), herring (H), krill 
(K). Parentheses indicate some degree of uncertainty in prey identification.

Date No. Post­
Release Days Behavior Prey

Prey
Identification

Method

Approx. Date of
Prey Sampling Area Biopsy

05/03/16 9 SF* HS Visual 05/19 (HS ± WS) KA X
05/12/16 18 SF* HS Visual 05/19 (HS ± WS) KA
05/13/16 19 SF* HS Visual - TB X
05/14/16 20 SF* HS Visual - TB
05/20/16 26 SF S Visual 05/08 (HS ± WS) WSB X
05/21/16 27 M - - 05/08 (HS ± WS) WSB
05/22/16 28 SF S Visual 05/08 (HS ± WS) WSB
05/23/16 29 T - - - KB
05/24/16 30 SF S Visual 05/08 (HS ± WS) WSB
05/25/16 31 M - - - KB
05/28/16 34 T - - - KB
05/30/16 36 SF S Visual 05/08 (HS ± WS) WSB
06/08/16 45 SF S Visual - KB X
06/16/16 53 SF S Visual 05/08 (HS ± WS) WSB
06/21/16 58 SF S Visual 05/08 (HS ± WS) WSB
05/17/17 14 SF S Visual 05/25 (HS ± WS) KB
05/25/17 22 T - - 05/25 (HS ± WS) KB
05/28/17 25 T - - 05/25 (HS ± WS) KB X
05/30/17 27 T* - - 05/30 - HS KA
05/31/17 28 SF* HS Visual 05/30 - HS KA
06/01/17 29 SF* HS Visual 05/30 - HS KA X
06/06/17 34 SF* HS Visual 05/30 & 06/09 (HS)

06/09 (HS) & 06/10
KA

06/09/17 37 SF* 
SF (BN

HS Sample (HS ± WS) KA X

06/10/17 38 Group)
SF (BN

H Sample 06/10 (H) KB

06/12/17 40 Group) H Visual 06/10 (H) KB
06/28/17 56 SF H Sample 06/28 (H) KB
07/08/17 66 M 

SF (BN
- - 07/05 (H) KB

07/15/17 73 Group) H Visual - WC X

55



Chapter 2 Pectoral herding: an innovative tactic for humpback whale foraging 2

2 Kosma MM, Werth AJ, Szabo AR, and Straley JM. 2019. Pectoral herding: an innovative tactic for humpback 
whale foraging. Royal Society Open Science. 6:191104. doi:10.1098/rsos.191104.

2.1 Abstract

Humpback whales (Megaptera novaeangliae) have exceptionally long pectorals (i.e., 

flippers) that aid in shallow water navigation, rapid acceleration and increased 

manoeuvrability. The use of pectorals to herd or manipulate prey has been hypothesized 

since the 1930s. We combined new technology and a unique viewing platform to document 

the additional use of pectorals to aggregate prey during foraging events. Here, we provide a 

description of ‘pectoral herding' and explore the conditions that may promote this innovative 

foraging behaviour. Specifically, we analysed aerial videos and photographic sequences to 

assess the function of pectorals during feeding events near salmon hatchery release sites in 

Southeast Alaska (2016-2018). We observed the use of solo bubble-nets to initially corral 

prey, followed by calculated movements to establish a secondary boundary with the 

pectorals—further condensing prey and increasing foraging efficiency. We found three ways 

in which humpback whales use pectorals to herd prey: (i) create a physical barrier to 

prevent evasion, (ii) cause water motion to guide prey towards the mouth, and (iii) position 

the ventral side to reflect light and alter prey movement. Our findings suggest that 

behavioural plasticity may aid foraging in changing environments and shifts in prey 

availability. Further study would clarify if ‘pectoral herding' is used as a principal foraging 

tool by the broader humpback whale population and the conditions that promote its use.
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2.2 Background

Large body sizes of baleen whales generate high metabolic demands that require the 

consumption of sizable, dense patches of prey [1-3]. However, filter feeding is energetically 

demanding and requires effective methods for prey aggregation [2]. Behavioural plasticity 

and foraging innovations are common among rorquals [4,5]. Humpback whales (Megaptera 

novaeangliae) provide an excellent example of how individual changes in behaviour can 

lead to diverse foraging tactics that maximize feeding efficiency [6-9]. Such foraging 

includes lunge feeding [6,10], bubble-net feeding [6,11-14], flick feeding [6], cooperative 

feeding [15], lobtail feeding [7] and other idiosyncratic tactics [12,16-18].

Humpback whales are one of the world's largest filter-feeders and regularly use lunge 

feeding to capture prey. This particular technique is energetically costly [19] and requires a 

two-step process. The whale first uses a high-velocity lunge to engulf large volumes of prey­

laden water. The whale then closes its mouth and the baleen acts as a sieve to filter prey 

[14,20]. The lunge can occur at depth [2,10,20-22] or on the surface [7,23,24]. In both 

situations, lunge feeding requires acceleration to high speeds [2,25] because the animal 

must overcome considerable drag from an open mouth. To counteract drag and increase 

speed, humpback whales open their mouths gradually, in synchrony with strong fluke 

strokes [20,22]. This acceleration maximizes the amount of water engulfed and aids in the 

capture of active prey [25]. Humpback whales feeding near the surface exhibit an array of 

lunge types [6,12,15] and some are in association with the creation of bubbles. A bubble-net 

is denoted by the formation of a ring of bubbles in a clockwise fashion to enclose prey 

[6,7,12,13,26] and this strategy can be employed by an individual or a group of whales. 

Bubble-nets serve as a physical barrier to increase lunge efficiencies and are most 

commonly used on naturally schooling fish (i.e., Pacific herring).
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Humpback whales have a distinctive body morphology that allows for the efficient 

capture of prey [27,28]. Notably, they have the longest pectorals (i.e., flippers) of any 

cetacean, measuring from one- quarter to one-third of their body length [29,30]. The 

pectorals of other cetaceans typically do not exceed one-seventh the length of their bodies 

[31]. The exceptionally long appendages of humpback whales allow for effective navigation 

in shallower water [31,32], rapid acceleration, greater manoeuvrability and increased 

stability [6,33,34], thereby increasing capture abilities of small prey such as euphausiids, 

herring (Clupea spp.), capelin (Mallotus villosus) and sandlance (Ammodytes spp.) [31,35­

37]. If not positioned effectively, however, larger pectorals may present a hydrodynamic 

disadvantage by increasing drag [38].

As the buccal cavity expands during a lunge, a hydrodynamically optimal position for the 

pectorals is for one or both to extend with the leading edge held at low angles of attack (α) 

[39]. Positioning the pectorals in this manner minimizes drag and provides the greatest 

amount of lift. The perpendicular position of extended pectorals also stabilizes the whale's 

body during a lunge [39]. Additionally, it has been hypothesized that rapid pectoral 

movement just prior to a lunge generates an upward pitching motion that counteracts the 

torque caused by rapidly engulfing water [34,39]. Segre et al. [40] defined four conditions for 

pectoral movement that would generate lift and increase propulsive thrust during an 

engulfment event: (i) both pectorals must move symmetrically, (ii) pectorals are angled into 

the path of the stroke, (iii) the stroke is oriented perpendicular to the whale's body, and (iv) 

the stroke is aligned with the direction of travel [40]. Lift is generated as pectorals are 

rotated at an angle to the water flow (angle of attack or α). However, this angle must be 

small relative to the direction of travel [41]. Above a critical α, the pectoral will impede lift, 

making the movement detrimental to acceleration. Miklosovic et al. [42] found that peak 

hydrodynamic efficiency of a humpback whale pectoral is around α = 7.5°. Above this, drag 
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increases and lift decreases, with complete stall occurring at α~ 17.5°. These studies 

illustrate that there are strict hydrodynamic criteria for using pectorals efficiently during 

lunge feeding.

In addition to providing lift, decreasing drag and promoting acceleration, pectorals may 

be used to corral or concentrate prey during lunge-feeding events. Humpback whales have 

multiple foraging strategies to aggregate prey, but concentration of prey may be increased 

by herding techniques [31,43]. Howell [43] was the first to suggest that humpback whales 

use their pectorals to direct schools of fish into their mouths. Brodie [38] elaborated on this 

theory by describing the use of white coloration on the pectoral's ventral surface to ‘flash' 

fish and herd prey towards the whale's mouth. He stated, ‘if there are hydrodynamic 

disadvantages to such large flippers there must be selective compensation, one possibility 

being their role in concentrating prey' [38]. Both authors, however, reported reservations 

about their findings because they lacked the perspective necessary to document such 

behaviours [38]. Our objective was to use new technology (e.g., unoccupied aerial vehicles 

(UAVs), small video cameras) to document and describe the distinctive role of humpback 

whale pectorals in herding and aggregating prey. We focused our efforts on whales feeding 

near salmon hatchery release sites [44] in Southeast Alaska (2016-2018). Hatchery 

structures allowed for close approaches with minimal behavioural disruption. Our results 

enhance our understanding of the complex and innovative foraging tactics that may be 

critical to humpback whale survival as population dynamics and environmental conditions 

continue to change [45,46].
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2.3 Methods

2.3.1 Study Location and Timing

This study was conducted in Chatham Strait, along the eastern shore of Baranof Island 

in Southeast Alaska (figure 1). We conducted systematic surveys from Warm Springs Bay 

north to Kelp Bay, with an emphasis on salmon hatchery release sites in Takatz Bay and 

Kasnyku Bay in 2016 (mid-May to the end of June) and 2017 (mid-April to the end of July). 

We put forth a more directed effort to document foraging strategies by humpback whales in 

Kasnyku Bay in 2018 (May). All effort was timed to overlap with releases of juvenile salmon 

from Hidden Falls Hatchery (managed by the Northern Southeast Regional Aquaculture 

Association).

2.3.2 Data Collection

We recorded humpback whale sightings and behavioural observations as part of a 3­

year study (2016- 2018) of humpback whale predation at Hidden Falls Hatchery and 

surrounding areas. We took identification photographs of each whale using digital SLR 

cameras with lenses ranging in focal lengths from 70 to 300 mm. Humpback whales were 

individually identified based on the pigmentation and trailing edges of their flukes and/or the 

shape and marks of their dorsal fins [47] and cross-referenced with the Southeast Alaska 

Humpback Whale Catalog [48]. This catalogue included all whale sightings through 2012 

and additional observations from later time periods (JM Straley & CM Gabriele 2016, 

unpublished data). We made an effort to capture video and photographic sequences with a 

Nikon D7000 camera whenever whales were observed feeding at the surface. In 2017, we 

also used a GoPro Hero5 Black video camera affixed to the end of a 3.5 m pole to provide 

an aerial perspective while standing on walkway platforms attached to hatchery net pens. 

These platforms provided a unique and close-up perspective without disturbing whale 
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behaviour that enabled camera views directly above or within bubble-nets created by the 

feeding whales. In 2018, we used an UAV (DJI Mavic Pro with 4 k video at 24 fps) to 

capture footage of whales surface lunge feeding near the facility. In addition to visual prey 

identification, we used a cast net and herring jig to sample prey in foraging areas. We 

removed juvenile salmon otoliths to differentiate hatchery-reared and wild origin fish 

according to methods described by Volk et al. [49].

2.3.3 Data Analysis

We used Adobe Premiere Pro to analyse video footage and Adobe Lightroom to assess 

photographic sequences. Kinematic assessments of whale foraging behaviour were made, 

with particular focus on the use of pectorals. We recorded pectoral positions, movements 

and prey locations (when possible) using real-time and frame-by-frame processing. Whale 

foraging movements were then three- dimensionally modelled using Blender, with post­

processing in Adobe Photoshop to accurately illustrate foraging behaviours seen in footage 

and photographs. Lunge durations were calculated from videos, when possible. All footage 

and photographic sequences were viewed and categorized based on surface foraging 

behaviour. Bubble-net feeding was denoted by the formation of a ring of bubbles followed 

by a lunge through the centre. A surface lunge was recorded as one of two commonly 

observed types: a vertical lunge, when the animal lunged upwards [24], and a lateral lunge, 

when the animal rotated approximately 90° while lunging [24]. Pectoral herding, a newly 

documented feeding strategy, was defined by directed movements of the pectorals to 

condense prey before a lunge. We identified three ways in which humpback whales used 

pectorals to herd prey: (i) create a physical barrier to prevent evasion by prey, (ii) cause 

water motion to direct prey movement, and (iii) position the white coloration on the ventral 

side to reflect light, causing prey to move in the opposite direction [12,38]. A feeding event 
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was defined as beginning with that start of a solo bubble-net and ending when the whale 

closed its mouth after a surface lunge. Multiple feeding events from one whale on the same 

prey, in the same general location, were defined as a foraging session. We calculated lunge 

duration when possible.

2.4 Results

We captured videos and photographic sequences of two humpback whales 

independently engaged in previously undocumented foraging techniques. Both whales 

(Whale A and Whale B) initiated feeding events with a solo bubble-net. Before lunging, 

these whales used their pectorals to manipulate and further condense prey. We defined this 

technique as ‘pectoral herding', with two methods of execution: ‘horizontal pectoral herding' 

and ‘vertical pectoral herding'. More detailed information of Whale A and Whale B 

encounters are provided in supplementary material, S2.1 and S2.2. We captured footage of 

one additional whale using horizontal pectoral herding, though a limited number of 

observations precluded this whale from further analyses.

2.4.1 Horizontal Pectoral Herding

We encountered Whale A (#2360 in Southeast Alaska Humpback Whale Catalog) on 27 

days from 2016 to 2018. We observed solo bubble-netting during 15 feeding sessions (135 

feeding events). Each solo bubble- net involved what we describe as horizontal pectoral 

herding prior to the lunge. Video footage depicting horizontal pectoral herding can be 

viewed in electronic supplemental materials or in the published manuscript 

(https://doi.org/10.1098/rsos.191104). During horizontal pectoral herding, Whale A initiated 

the feeding event by deploying an upward-spiral bubble-net to corral prey (figures 2.2 and 

2.3; Stage A). At the closure of the bubble-net, Whale A rotated its head parallel to the 
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surface of the water and towards the centre of the net. The whale then moved its left 

pectoral in and out of the water in a forward, sinusoidal motion along the initial edge of the 

bubble- net barrier (figures 2.2 and 2.3; Stage B). Whale A continued this pectoral 

movement while gradually opening its mouth and allowing the upper jaw to rise above the 

water line, while the lower jaw remained subsurface. The whale continued to open its mouth 

wider until it reached the opposite side of the bubble- net (figures 2.2 and 2.3; Stage C). 

Whale A's head rotated in the direction of the left pectoral 51.9% of all documented feeding 

events. In these cases, the lower jaw was tilted at an angle that exposed prey to the largest 

circumference of the buccal cavity (figure 2.4). For all other feeding events, the degree of 

head tilt was unknown or Whale A maintained a stationary head position, bringing its lower 

jaw up out of the water to meet the upper jaw. Whale A never rotated its head away from 

the herding pectoral. The mean lunge duration, defined as the start of pectoral movement to 

the close of the mouth, was 8 ± 1 s (calculated from 32 of 36 videos). Not all videos could 

be used to calculate lunge duration because they did not document the entire process.

We observed Whale A using horizontal pectoral herding in four locations that spanned 

approximately 21 km of coastline. This included Warm Springs Bay, Takatz Bay (2016 

hatchery release site), Kasnyku Bay (2016 and 2017 hatchery release site) and Kelp Bay. In 

2016, we observed Whale A lunge feeding in Warm Springs Bay, Takatz Bay and Kelp Bay. 

Although prey sampling was sparse and inconsistent, we observed juvenile salmon at all of 

these locations. In May 2016 and 2017, we collected juvenile hatchery salmon from Warm 

Springs Bay (within 12-44 days of feeding sessions) and visually identified juvenile salmon 

during all Warm Spring Bay foraging events. Feeding sessions in Takatz Bay coincided with 

a salmon release event and continued onto the day following. Juvenile salmon were only 

visually identified in Takatz Bay, but all feeding sessions were in the vicinity of hatchery 

salmon releases. In 2017, Whale A was observed horizontal pectoral herding in Kasnyku
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Bay and Kelp Bay. The feeding sessions in Kasnyku Bay were associated with salmon 

releases (within 7 days of a release). Prey sampling and otolith marks from fish collected 

within 1-3 days of feeding sessions confirmed juvenile hatchery salmon in the area. We 

collected juvenile salmon (hatchery and wild) within 8 days of feeding sessions in Kelp Bay. 

Pacific herring (Clupea pallasii) were also sampled in Kelp Bay during nine different feeding 

sessions. We were unable to differentiate whether prey being consumed in Kelp Bay were 

juvenile salmon or herring. Of all feeding sessions involving horizontal pectoral herding, 

94.1% were identified as having targeted juvenile (hatchery-released chum and coho, wild 

pink (Oncorhynchus gorbuscha) salmon.

2.4.2 Vertical Pectoral Herding

We documented Whale B (#2227 in Southeast Alaska Whale Catalog) solo bubble-net 

feeding at Hidden Falls Hatchery on 16 May 2017. During the 2.4 h observation period, we 

recorded 13 solo bubble-net feeding events, all of which were in the vicinity of newly 

released hatchery-reared juvenile coho salmon (figure 2.5). We observed two well- 

documented types of kinematic feeding behaviours for Whale B: vertical lunge and lateral 

lunge. We also documented vertical pectoral herding, which has not been previously 

documented in the scientific literature. Video footage depicting all three feeding types can 

be viewed in electronic supplemental materials or in the published manuscript 

(https://doi.org/10.1098/rsos.191104).

Vertical pectoral herding was used in 30.8% of all feeding events. We identified vertical 

pectoral herding when Whale B moved its pectorals from a neutral state (as in vertical lunge 

and lateral lunge) to a protraction-abduction posture (figure 2.6). After establishing this 

posture, the whale simultaneously moved both pectorals forward and into a V-shaped 

position on either side of its mouth, with pectorals curved ventrally (figure 2.7). A vertical 
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lunge was used during 23.1% of all feeding events. When employing this technique, the 

whale's pectorals first abducted with the tips curved up. Prior to closing its mouth, the 

pectorals adducted to a vertical lunge position, tight against the side of the body. Finally, the 

pectorals retracted and angled posteriorly as the whale lunged to the surface (figure 2.7). 

The distinguishing feature between vertical lunge and pectoral herding was a slight upward 

dorsal-oriented curve to the pectorals and less visibility of the pectorals as they were 

abducted with a swept-back configuration. A lateral lunge was used in 46.2% of the feeding 

events (figure 2.6). When using this technique, the whale pivoted on its left pectoral and 

rolled approximately 90° while lunging. The left pectoral was exposed and occasionally 

broke the surface of the water as the whale used it to manoeuvre.

When documenting Whale B's feeding events, we observed notable differences in light 

conditions. Both vertical lunge (3 of 3) and lateral lunge (5 of 6) occurred in shaded waters. 

All vertical pectoral herding events (4 of 4) occurred in sunlit water, which was easily 

identified from photographs due to a sun-induced green tint of the water (figure 2.6). Whale 

B employed different tactics in the same location only when light conditions varied. In 

general, Whale B appeared to use vertical pectoral herding in sunlit areas but switched to 

vertical lunge or lateral lunge when the same area became shaded. The single lateral lunge 

event in sunlight waters was located near a surface obstacle in the centre the bubble-net. 

Possible avoidance behaviour was documented as the whale lunged near the buoy. Prey 

movement in the direction opposite of vertical pectoral positioning was visible in 2 of 13 

engulfment events (figure 2.8). In ‘before' snapshots (i.e., images taken prior to vertical 

pectoral positioning), we observed a dense aggregation of prey between the mouth and 

pectoral. In ‘after' snapshots (i.e., images taken once pectorals were placed in the V-shaped 

position), we observed less dense prey patches in the area between the mouth and 

pectoral. We also identified a greater relative density of prey that had moved towards the 
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whale's mouth. We could not calculate lunge duration for Whale B because the whale 

started to lunge in water too deep to see the entire process using aerial footage. The 

variation in light conditions also prevented the identification of consistent cues for the start 

of a lunge.

2.5 Discussion

It is well known that humpback whale pectorals aid in acceleration and manoeuvrability 

during feeding events [27,28]. Our study recognizes an alternative use of pectorals during 

foraging. Here, we have provided the first empirical evidence for a longstanding hypothesis 

that humpback whales use their pectorals to herd and aggregate prey [38,43,50]. Our study 

combined the use of new technology and a unique viewing opportunity at Hidden Falls 

Hatchery to provide the vantage points necessary for such documentation. Although the 

concept that humpback whales use their pectorals to manipulate prey is not new, the use of 

pectorals in conjunction with a bubble-net (as a secondary barrier) had never been 

documented. Using direct video footage and photographic sequences, we described this 

foraging technique as ‘pectoral herding', with two methods of execution: horizontal pectoral 

herding and vertical pectoral herding. We observed two humpback whales using bubble- 

nets as a primary barrier to corral prey, proceeded by deliberate movements of the 

pectorals to establish a secondary barrier before the lunge. These observations suggest 

that pectorals are used to further condense prey inside the bubble-net, thereby increasing 

feeding efficiency for each event. From our results, we found three ways in which humpback 

whales use pectorals to herd prey: (i) create a physical barrier to prevent evasion by prey, 

(ii) cause water motion to direct prey movement, and (iii) position the white coloration on the 

ventral side to reflect light, causing prey to move in the opposite direction [12,38]. These 
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three methods of pectoral herding are not mutually exclusive and can be used in 

conjunction with one another.

2.5.1 Horizontal Pectoral Herding

The documented solo bubble-nets began and ended in the same general location. Thus, 

there is greater elapsed time for bubbles created near the beginning portion of the net, 

compared to the end. The greater dissipation of bubbles and possibility that fish are scared 

towards the beginning portion of the net (as a result of whale activity near the bubble-net 

closure site) suggests a potential weakness in the primary barrier. We hypothesize that 

Whale A uses horizontal pectoral herding to strengthen the beginning portion of the solo 

bubble-net and establish a secondary barrier to further condense prey, thereby increasing 

the amount of prey consumed during each lunge. Because the energetically costly 

movement of the left pectoral probably hinders the acceleration of the whale, we assert that 

an alternative use must be at play. We found that lunge durations of Whale A averaged 8 s, 

whereas Werth et al. [51] documented the mean engulfment rates from a solo humpback 

whale lunge to be closer to 2 s. This difference in engulfment rates with and without 

horizontal pectoral herding supports our hypothesis that any additional movement must 

substantially aid in prey capture. We conclude that Whale A used its pectorals in two of the 

three ways to herd prey: (i) create a physical barrier to prevent evasion by prey and (ii) 

cause water motion to direct prey movement. In addition, pectoral movements could create 

eddies and/or drag that increases the whale's capacity to alter prey movement. We note 

that our descriptions of horizontal pectoral herding rely upon observations from a single 

whale. However, we documented the use of this particular foraging technique by one 

additional whale, suggesting potential for cultural transmission of this foraging behaviour.
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In over half of the documented events, Whale A rotated its head in the direction of the 

left pectoral before closing its mouth (during all other fully documented events, the head 

remained centred and never rotated in the opposite direction). This suggests that the left 

pectoral was herding prey and that the whale turned its mouth into the path of swimming 

prey, further increasing the amount of fish consumed per lunge. The lower jaw turned at an 

angle that exposed prey to the largest circumference of the buccal cavity, which probably 

prevented escape between the lower jaw and the surface of the water. The rostrum was 

also above the surface of the water to avoid blocking prey from entering the buccal cavity 

when the whale turned its head. When the whale's head remained central, the lower jaw 

surfaced to meet the upper jaw. During these events, the whale may have sensed that its 

buccal cavity was full of fish, making head rotation counterproductive [52].

2.5.2 Vertical Pectoral Herding

Our current understanding about lunge feeding revolves around the theory that whales 

use their pectorals to actively increase lift and/or stabilize their body during a lunge. The 

pectoral position used by Whale B suggests that the whale violated two out of the four 

criteria proposed for a hydrodynamic stroke [40]. First, the pectorals were not oriented at an 

efficient angle into the path of the stroke (α > 17.5°). The stroke was also not oriented 

perpendicular to the body, which would inhibit stability during the lunge. Therefore, we claim 

that the pectoral movements of Whale B were not intended to increase hydrodynamic 

efficiency, stability or lift. Whale B's forward speed was probably hindered by a high angle of 

attack and V-shaped position of the pectorals around the mouth. During three of the four 

pectoral herding events, the rostrum and left pectoral broke the surface of the water at 

approximately the same time (within 1 s of each other). There is no hydrodynamic reason 

for the pectorals to be in line with or above the position of the mouth during a lunge. By 
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eliminating the use of pectorals for stabilization and thrust, we deduced that Whale B's 

pectorals were used to create a secondary barrier along the edges of the mouth during a 

lunge, manipulating prey movement towards the mouth and increasing foraging efficiency.

Light conditions and prey reactions also suggest that Whale B used its pectorals to herd 

prey. There were three main locations around the net pens that had recurring feeding 

events. During Whale B's feeding session, the eastern side of the net pens transitioned 

from sunlit waters to shade. In all three of these locations, Whale B used vertical pectoral 

herding when lunging in the sun. During the only sunlight feeding event without vertical 

pectoral herding, we hypothesize that Whale B was manoeuvring around a buoy and that 

the whale would have used vertical pectoral herding if the obstacle were not present. When 

waters transitioned from sunlight to shade in these three main locations, the whale used 

vertical or lateral lunges instead of vertical pectoral herding. This provides support for the 

hypothesis that behavioural shifts were based on light conditions rather than locational 

differences. Brodie [38] suggested that the ventral side of the pectorals can be used to 

‘flash' fish and cause them to move in the direction of the dark mouth, which functions as a 

deceptive refuge. When prey movement was visible in sunlit waters, we observed prey 

moving in the direction of the mouth, apparently in response to the position of the pectorals. 

This is convincing evidence that pectorals alter prey behaviour. The lack of vertical pectoral 

herding in shaded water suggests that the physical presence of the pectorals alone is not 

effective enough to cause fish to move towards the mouth. The combination of light 

reflection and a physical barrier probably provides a foraging benefit to justify the 

hydrodynamic detriment caused by vertical pectoral herding. Thus, it is probable that Whale 

B used pectorals in two of the three ways to herd prey: (i) create a physical barrier to 

prevent evasion by prey and (ii) position the white coloration on the ventral side to reflect 

light and cause prey to move in the opposite direction [12,38].
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2.5.3 Prey and Behavioural Plasticity

Schooling fish cluster in response to predators or other startling disturbances [53-57], 

and humpback whales have been known to take advantage of this behaviour [26]. Sharpe 

[15] experimented with an artificial pectoral and found that herring respond to a rotating 

pectoral by fleeing in the opposite direction. It has also been suggested that humpback 

whales manipulate prey by slapping their pectoral fins or flukes on the surface of the water 

[7,26]. Whale A's pectoral movement makes a startling disturbance that could alter the 

direction of prey within the bubble-net barrier. We were unable to see prey in videos of 

Whale A foraging. However, the continued use of horizontal pectoral herding, in 

combination with its hydrodynamic disadvantages, is strong evidence for an increase 

in foraging efficiency. Additionally, a study on hatchery-reared juvenile salmon [58] showed 

that fish avoid light and seek out dark refugia when artificial lights were activated and/or 

flashing. We believe that light reflected off the ventral surface of Whale B's pectorals served 

as a stimulus to scare fish in the direction of the dark ‘refuge' of the whale's mouth. We 

were able to directly observe prey movement towards the mouth in response to Whale B's 

pectoral placement in some of the videos. Pectoral movement and flashing may directly 

stun or disorient prey [7].

It is well known that humpback whales use bubble-nets to aggregate prey [12,26]; 

however, bubble-nets may not be as efficient when prey do not naturally aggregate into 

dense patches. This is because schooling fish would aggregate within a single area of the 

bubble-net, enabling the consumption of most fish in a single lunge. Non-schooling fish may 

very well distribute themselves throughout the bubble-net, resulting in fewer fish consumed 

per lunge. Acoustic prey surveys at our study site showed that groups of juvenile coho 

(Oncorhynchus kisutch) and chum (Oncorhynchus keta) salmon were small, patchy and 

short-lived compared to those formed by herring and krill [59]. Whales tend to moderate 
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their behaviour to efficiently exploit different prey types and respond to dynamic prey 

conditions [14,60]. It is possible that the two whales we observed have independently 

altered their foraging strategies to accommodate non-schooling fish and more effectively 

incorporate hatchery- released juvenile salmon into their diets. Because aerial 

documentation of solo bubble-netting whales has been limited, we cannot conclude whether 

or not pectoral herding is restricted to these whales and the unique prey resource of 

hatchery-reared juvenile salmon. Pectorals are an efficient secondary barrier and may be 

used by other whales lunging on different prey. For Whales A and B, 93.9% of pectoral 

herding events exclusively targeted juvenile salmon. The remaining events may have also 

targeted herring as prey. Additionally, a bubble-net may be substantially larger than the size 

of a whale's open mouth, restricting engulfment to only a portion of the prey enclosed within 

the net. A secondary barrier further condenses prey, conceivably enhancing the energy 

gained per lunge.

McMillan et al. [18] documented humpback whales using a feeding strategy called ‘trap­

feeding'. The authors inferred that whales use pectorals to manipulate prey by flicking fish 

into their mouth. The available footage of the pectoral movement in this study relies on a 

lateral perspective with poor visibility below the water's surface and no view of prey. This 

makes it difficult to connect pectoral movements to a specific behaviour or make inferences 

about prey responses. Additionally, lateral footage makes it difficult to differentiate between 

the use of pectorals as a stabilizing force during a lunge and pectoral movements to 

manipulate prey. In general, most whale observations are obtained from land or boat, 

yielding lateral views that limit the perspective and skew our perception of individual 

behaviours. With innovative technology (e.g., UAVs, small video cameras), we can now 

gain the perspectives necessary for more accurate interpretations of marine mammal 

foraging tactics. Our observations, which relied on an aerial perspective, provide insight into 
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the position of humpback whales in relation to prey (above and below the water) as well as 

a more detailed depiction of the whale's movements and position during feeding events. 

Based on lateral-aerial comparisons of pectoral herding by humpback whales, we believe 

that conventional boat or land- based footage should be supplemented by aerial imagery in 

order to gain insight and avoid misinterpretations about marine mammal behaviour.

Despite the advantages of using advanced technology, our study is limited by small 

sample sizes and a lack of quantitative kinematics. Our findings depended on functional 

interpretations of movements made by two whales with only above-surface documentation. 

A more inclusive survey of solo feeding humpback whales (encompassing broader spatial 

scales and additional whales) would provide greater insight into how these animals are 

taking advantage of their lengthy appendages during foraging. Furthermore, future 

investigations should pair aerial footage of feeding whales with prey distribution data, and 

synchronous motion suction cup tags (i.e., DTAGs) to better quantify kinematic behaviours 

and prey dynamics, both above and below the surface [61]. Notably, however, our study 

suggests a flaw with current tagging technology. Although tags are often deployed on the 

backs of whales to record movements (pitch, yaw and roll) of the entire whale, we found 

that prey aggregation and capture is not limited to movements of the head, caudal peduncle 

and tail flukes. Thus, tag sensors that also quantitatively record these movements of the 

pectorals would allow for a clearer understanding of how these appendages are 

kinematically being used. Finally, more accurate lunge durations (e.g., starting when the 

whale's mouth opened) would help us compare acceleration rates between lunges with and 

without pectoral herding, furthering our understanding about the hydrodynamic impacts 

caused by pectoral movements.

In summary, our results provide empirical evidence of the use of pectorals to herd prey. 

They also illustrate considerable variation among individual humpback whale foraging 
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strategies. With our documentation of pectoral herding, we have provided support for 

plasticity in foraging behaviour of cetaceans. These animals are highly innovative, with 

individual whales successfully using different tactics to approach the same prey in the same 

situation [26]. Maintaining a suite of foraging strategies probably aids humpback whales in a 

changing environment, where food availability fluctuates and competition may impact 

population dynamics. Further investigation would enhance our understanding about whether 

humpback whales use pectoral herding as a principal foraging technique as well as the 

conditions that promote its use.

2.6 Ethics Statement

This research was conducted under National Marine Fisheries Service (NMFS) permits 

14122 and 18529, University of Alaska Institutional Animal Care and Use Committee 

(IACUC) permit 907314-3 and State of Alaska Department of Fish and Game permit CF-18- 

049. The research reported in this publication was supported by the National Institute of 

General Medical Sciences of the National Institutes of Health, under award RL5GM118990. 

The content within this manuscript is solely the responsibility of the authors and does not 

necessarily represent the official views of the National Institutes of Health.

2.7 Funding Statement

M.M.K. was supported by the Biomedical Learning and Student Training (BLaST) 

programme through the University of Alaska Fairbanks. Fieldwork was funded by the Alaska 

Whale Foundation (AWF), Lindblad Expeditions-National Geographic Conservation Fund 

and Mark Kelley Photography. Research reported in this publication was supported by the 

National Institute of General Medical Sciences of the National Institutes of Health, under 

award no. RL5GM118990. The content within this manuscript is solely the responsibility of 

73



the authors and does not necessarily represent the official views of the National Institutes of 

Health.

2.8 Acknowledgments

Leonie Mahke, Nigel Ogle, Jasmine Gil, Christine Walder, Danielle Derrick and Cheryl 

Barnes provided field support. Northern Southeast Regional Aquaculture Association and 

Hidden Falls Hatchery staff provided logistical support and net pen access necessary for 

obtaining aerial footage. Kyle Kosma (kylekosma.com) helped analyse feeding methods to 

create graphical representations (figures 2, 5 and 7). Additional support was provided by 

Jennifer Cedarleaf, Ellen Chenoweth and Lauren Wild (The Human Cetacean Interaction 

Lab at the University of Alaska Southeast). Cheryl Barnes, Megan McPhee and Matthew 

Wooller reviewed earlier drafts of this manuscript.

2.9 Author Contributions

M.M.K., A.J.W., A.R.S., and J.M.S. contributed to the experimental conception and design; 

M.M.K. was primarily responsible for data collection; M.M.K was primarily responsible for 

analysing and interpreting data with contributions from A.J.W., A.R.S. and J.M.S.; M.M.K. 

drafted the article. All authors revised the article and provided final approval for the version 

to be published.

2.10 References

1. Piatt JF, Methven DA. 1992 Threshold foraging behavior of baleen whales. Mar.

Ecol. Prog. Ser. 84, 205-210.

74

kylekosma.com


2. Goldbogen JA, Calambokidis J, Croll DA, Harvey JT, Newton KM, Oleson EM, 

Schorr GS, Shadwick RE. 2008 Foraging behavior of humpback whales: kinematic 

and respiratory patterns suggest a high cost for a lunge. J. Exp. Biol. 211, 3712­

3719.

3. Werth AJ, Potvin J. 2016 Baleen hydrodynamics and morphology of cross-flow 

filtration in balaenid whale suspension feeding. PLoS ONE 11, e0150106. 

(doi:10.1371/journal.pone.0150106)

4. Eisenberg J. 1981 The Mammalian Radiations. Chicago: University of Chicago 

Press.

5. Partridge L , Green P. 1985 Intraspecific feeding specializations and population 

dynamics. In: Behaviroral Ecology (Ed. by R.M. Silby & R. H. Smith), pp. 207-226. 

Oxford: Blackwell Scientific Publications.

6. Jurasz CM, Jurasz VP. 1979 Feeding modes of the humpback whale, Megaptera 

novaeangliae, in Southeast Alaska. Sci. Rep. Whales Res. Inst. 31, 69-83.

7. Weinrich MT, Schilling MR, Belt CR. 1992 Evidence for acquisition of a novel feeding 

behaviour: lobtail feeding in humpback whales, Megaptera novaeangliae. Anim. 

Behav. 44, 1059-1072. (doi:10.1016/S0003-3472(05)80318-5)

8. Parks SE, Cusano DA, Stimpert AK, Weinrich MT, Friedlaender AS, Wiley DN. 2014 

Evidence for acoustic communication among bottom foraging humpback whales. 

Sci. Rep. 4, 1-7.

9. Fleming AH, Clark CT, Calambokidis J, Barlow J. 2016 Humpback whale diets 

respond to variance in ocean climate and ecosystem conditions in the California 

Current. Glob. Chang. Biol. 22, 1214-1224.

75



10. Watkins WA, Schevill WE. 1979 Aerial observation of feeding behavior in four baleen 

whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and 

Balaenoptera physalus. J. of Mammalogy 60, 155-163. (doi:10.2307/1379766)

11. Ingebrigsten A. 1929 Whales caught in the North Atlantic and other seas. Int.

Council Explor. Sea, Rapp. P-V Reun. 56, 1-26.

12. Hain JHW, Carter GR, Krauss SD, Mayo CA, Winn HE. 1982 Feeding behavior of 

the humpback whale, Megaptera novaeangliae, in the western North Atlantic. Fish 

Bull. 80, 259-268.

13. Sharpe FA, Dill LM. 1997 The behavior of Pacific herring schools in response to 

artificial humpback whale bubbles. Can. J. Zool. 75, 725-730. (doi: 10.1139/z97- 

093)

14. Goldbogen JA, Cade DE, Calambokidis J, Friedlaender AS, Potvin J, Segre PS, 

Werth AJ. 2017 How baleen whales feed: the biomechanics of engulfment and 

filtration. Ann. Rev. Mar. Sci. 9, 367-386.

15. Sharpe FA. 2001 Social foraging of the southeast Alaskan humpback whale, 

Megaptera novaeangliae [dissertation]. Burnaby (BC): Simon Fraser University.

16. Baker CS. 1985 The population structure and social organization of humpback 

whales (Megaptera novaeangliae) in the central and eastern North Pacific 

[dissertation]. Honolulu (HI): University of Hawaii.

17. D'Vincent CG, Nilson RM, Hanna RE. 1985 Vocalization and coordinated feeding 

behavior of the humpback whale in Southeastern Alaska. Scientific Reports of the 

Whale Research Institute, 36, 41-47.

18. McMillan CJ, Towers JR, Hildering J. 2018 The innovation and diffusion of “trap­

feeding”, a novel humpback whale foraging strategy. Mar. Mamm. Sci. 9999, 1-18. 

(doi:10.1111/mms.12557)

76



19. Potvin J, Goldbogen JA, Shadwick RE. 2009 Passive versus active engulfment: 

verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera 

physalus. J. R. Soc. Interface 6, 1005-1025. (doi: 10.1098/rsif.2008.0492)

20. Goldbogen JA, Pyenson ND, Shadwick RE. 2007 Big gulps require high drag for fin 

whale lunge feeding. Mar. Ecol. Prog. Ser. 349, 289-301.

21. Croll DA, Acevedo-Guitierrez A, Tershy BR, Urban-Ramirez J. 2001 The diving 

behavior of blue and fin whales: is dive duration shorter than expected based on 

oxygen stores? Comparative Biochemistry and Physiology Part A 129, 797-809.

22. Goldbogen JA. 2006 Kinematics of foraging dives and lunge-feeding in fin whales. J. 

Exp. Biol. 209, 1231-1244.

23. Gill PC. 2002 A blue whale (Balaenoptera musculus) feeding ground in a southern 

Australian coastal upwelling zone. J. Cetacean Res. Manag. 4, 179-184.

24. Ware C, Friedlaender AS, Nowacek DP. 2010 Shallow and deep lunge feeding of 

humpback whales in fjords of the West Antarctic Peninsula. Mar. Mam. Sci. 27, 587­

605. (doi:10.1111/j.1748-7692.2010.00427.x)

25. Simon M, Johnson M, Madsen PT. 2012 Keeping momentum with a mouthful of 

water: behavior and kinematics of humpback whale lunge feeding. J. Exp. Biol. 215, 

3786-3798. (doi:10.1242/jeb.071092)

26. Wiley DN, Ware C, Bocconcelli A, Cholewiak D, Friedlaender A, Thompson M, 

Weinrich M. 2011 Underwater components of humpback whale bubble-net feeding 

behavior. Behaviour 148, 575-602. (doi:10.1163/000579511X570893)

27. Woodward BL, Winn JP, Fish FE. 2006 Morphological specializations of baleen 

whales associated with hydrodynamic performance and ecological niche. J Morphol 

267, 1284-1294. (doi:10.1002/jmor. 10474).

77



28. Fish FE, Weber PW, Murray MM, Howle LE. 2011 The tubercles on humpback 

whales' flippers: application of bio-inspired technology. Integr. Comp. Biol. 51, 203­

213.

29. True FW. 1983 The whalebone whales of the western North Atlantic. Washington, 

DC: Smithsonian Institution Press.

30. Fish FE, Battle JM. 1995 Hydrodynamic design of the humpback whale flipper. J. 

Morphol. 225, 51-60.

31. Tomilin AG. 1957 Mammals of the U.S.S.R. and adjacent countries. 9: Cetacea. 

Moscow: Nauk S.S.S.R. (English Translation, 1967, Israel Program for Scientific 

Translations, Jerusalem)

32. Perkins J, Whitehead H. 1977 Observations on three species of baleen whales off 

northern Newfoundland and adjacent waters. Fish. Res. Board Can. 34, 1436-1440.

33. Madsen CJ, Herman LM. 1980. Social and ecological correlates of cetacean vision 

and visual appearance. In: Herman LM, editor. Cetacean behavior: mechanisms & 

functions. Malabar, FL: R. E. Krieger Publications. p. 101-47.

34. Fish FE, Howle LE, Murray MM. 2008 Hydrodynamic flow control in marine 

mammals. Integr. Comp. Biol. 48, 788-800.

35. Matthews LH. 1937 The humpback whale, Megaptera nodosa. Discovery Reports 

17, 7-92.

36. Overholtz WJ, Nicolas JR. 1979 Apparent feeding by the fin whale, Balaenoptera 

physalus, and humpback whale, Megaptera novaeangliae, on the American sand 

lance, Ammodytes americanus, in the northwest Atlantic. Fish. Bull. 77, 285-287.

37. Ichii T, Kato H. 1991 Food and daily food consumption of southern minke whales in 

the Antarctic. Polar Biol. 11, 479-487.

78



38. Brodie P. 1977 Form, function and energetics of Cetacea: a discussion. In: Harrison 

RJ (ed) Functional anatomy of marine mammals. New York: Academic Press.

39. Cooper LN, Sedano N, Johansson S, May B, Brown JD, Holliday CM, Kot BW, Fish 

FE. 2008) Hydrodynamic performance of the minke whale (Balaenoptera 

acutorostrata) flipper. J. Exp. Biol. 211, 1859-1867. (doi: 10.1242∕jeb.014134)

40. Segre PS, Seakamela SM, Meyer MA, Findlay KP, Goldbogen JA. 2017 A 

hydrodynamically active flipper-stroke in humpback whales. Curr. Biol. 27, R636- 

R637. (doi:10.1016/j.cub.2017.05.063)

41. Fish FE. 1994 Influence of hydrodynamic design and propulsive mode on 

mammalian swimming energetics. Aust. J. Zool. 42, 1-16.

42. Miklosovic DS, Murray MM, Howle LE, Fish FE. 2004 Leading-edge tubercles delay 

stall on humpback whale (Megaptera novaeangliae) flippers. Phys. Fluids 16, L39 

(doi:10.1063/1.1688341).

43. Howell AB. 1930 Aquatic Mammals: their adaptations to life in the water. New York: 

Dover.

44. Chenoweth EM, Straley JM, McPhee MV, Atkinson S, Reifenstuhl S. 2017 

Humpback whales feed on hatchery-released juvenile salmon. R. Soc. open sci. 4, 

170180. (doi: 10.1098/rsos.170180)

45. Pigliucci M. 2005 Evolution of phenotypic plasticity: Where are we going now? 

Trends Ecol. 20, 481-486. (doi:10.1016/j.tree.2005.06.001)

46. Barlow JJ, Calambokidis E, Falcone A. 2011 Humpback whale abundance in the 

north pacific estimated by photographic capture-recapture with bias correction from 

simulation studies. Mar. Mamm. Sci. 27, 793-818.

47. Katona S, Whitehead H. 1981 Identifying humpback whales using their natural 

markings. Polar Record 20, 439-444. doi:10.1017/S003224740000365X

79



48. Straley JM, Gabriele CM. 2000 Humpback whales of southeast Alaska. Humpback 

whale fluke identification catalog. Third printing. National Park Service, Gustavus, 

Alaska.

49. Volk EC, Schroder SL, Grimm JJ. 1999 Otolith thermal marking. Fish. Res. 43, 205­

219. (doi:10.1016/S0165-7836(99)00073-9)

50. Millias JG. 1907 From Placentia Bay to Spitzbergen: a naturalist aboard a North 

Atlantic whaler. From "Newfoundland and Its Untrodden Ways". London. Extracts 

printed in Nature Canada, 2(4) 3-8 (1973)

51. Werth AJ, Kosma MM, Chenoweth EM, Straley JM. 2019 New views of humpback 

whale flow dynamics and oral morphology during prey engulfment. Mar. Mamm. Sci. 

000, 1-23. (doi.10.1111/mms.12614)

52. Pyenson ND, Goldbogen JA, Vogl AW, Szathmary G, Drake RL, Shadwick RE. 2012 

Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. 

Nature 485, 498-501.

53. Allen WE. 1920 Behavior of loon and sardines. Ecology 1, 309-310.

54. Breder CM. 1959 Studies on the social groups of fish. Bull. Am. Mus. Nat. Hist. 117, 

397-481.

55. Radakov DV. 1973 Schooling in the Ecology of Fish (Translated by H. Mills). New 

York: Halstead Press.

56. Pitcher TJ, Wyche CJ. 1983 Predator-avoidance behaviours of sand-eel schools: 

why schools seldom split. In: Predators and Prey in Fishes (Ed. by D. L. G. Noakes, 

D. G. Lindquist, G. S. Helfman & J. A. Ward), pp. 193-204. Boston: Dr W. Junk 

Publishers.

57. Pitcher TJ, Parrish JK. 1993 Functions of shoaling behaviour in teleosts. 363-439. 

In: TJ Pitcher, ed. Behaviour of teleost fishes, 2nd Ed. Chapman & Hall, New York.

80



58. Nemeth RS, Anderson JJ. 1992 Response of juvenile Coho and Chinook Salmon to 

strobe and mercury vapor lights. North Am. J. Fish. Manag. 12, 684-692. (doi: 

10.1577/1548-8675(1992)012<0684:ROJCAC>2.3.CO;2)

59. Chenoweth EM. 2018 Bioenergetic and economic impacts of humpback whale 

depredation at salmon hatchery release sites [dissertation]. Fairbanks (AK): 

University of Alaska Fairbanks.

60. Cade DE, Friedlaender AS, Calambokidis J, Goldbogen JA. 2016 Kinematic diversity 

in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617-2624.

(doi:10.1016/j.cub.2016.07.037)

61. Johnson MP, Tyack PL. 2003 A digital acoustic recording tag for measuring the 

response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3- 12.

(doi:10.1109/JOE.2002.808212)

81



2.11 Figures

Figure 2.1. Study sites used to document foraging behaviours of humpback whales in 
Southeast Alaska (2016-2018). Red dots indicate release sites for juvenile hatchery-reared 
salmon.
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Figure 2.2. Graphical representations of horizontal pectoral herding by Whale A in Southeast Alaska. Prey are denoted in 
yellow. Stage A: Deployment of an upward-spiral bubble-net to corral the prey and establish the first barrier (1). Stage B: 
Movement of the left pectoral in and out of the water, along the edge of the bubble-net barrier, creating a secondary barrier (2). 
Stage C: Lunge to engulf the prey. Graphic by Kyle Kosma.



84

Figure 2.3. Photographic sequence involving horizontal pectoral herding by Whale A in Southeast Alaska. Movements 
progress from (A) beginning to (F) end. (A) Bubble-net formation; (B-E), horizontal pectoral herding; (F) terminal lunge. Yellow 
arrow represents the sinusoidal pectoral movement along the edge of the bubble-net barrier.



Figure 2.4. Photographic sequence of head tilt during the final portion of a lunge associated with horizontal pectoral herding by 
Whale A in Southeast Alaska. Movements progress from (a) earliest to (c) latest. Yellow line denotes the location of pectoral.
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Figure 2.5. Graphical representation of the net pen structures at Hidden Falls Hatchery, in Kasnyku Bay (Southeast Alaska). 
Yellow circles represent bubble-nets created during feeding events for Whale B, numbered in chronological order. Blue arrow 
marks where juvenile coho salmon were being released into the marine environment. An asterisk denotes a feeding event 
conducted in sunlit waters. Events 1,3, 4, 7, 11 and 12 involved a lateral lunge. Events 8, 9 and 13 involved a vertical lunge.
Events 2, 5, 6 and 10 involved vertical pectoral herding. Graphic by Kyle Kosma.
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Figure 2.6. Snapshots from the footage of feeding events at Hidden Falls Hatchery, Kasnyku Bay (Southeast Alaska; 16 May 
2017) by Whale B. Images are grouped according to three different kinematic feeding techniques at the conclusion of bubble- 
net formation: vertical pectoral herding, vertical lunge and lateral lunge. Events 2, 5, 6 and 10 involved vertical pectoral herding. 
Events 8, 9 and 13 involved a vertical lunge. Events 1, 3, 4, 7, 11 and 12 involved a lateral lunge. Yellow lines outline pectoral 
locations.
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Figure 2.7. Graphical representation of vertical pectoral herding by Whale B in Southeast Alaska. Prey are denoted in yellow. 
(a) Whale deploys an upward-spiral bubble-net to corral prey and establish the first barrier; pectorals then protract to form a ‘V' 
shape around the open mouth (depicted by blue arrows), creating a second physical barrier. (b) Change in the angle of attack 
(α) from pre- (0°) to peri- (90°) vertical pectoral herding. (c) Body position comparison between pre- (left) and peri- (right) 
vertical pectoral herding. Graphic by Kyle Kosma.
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Figure 2.8. Before and after photographs of vertical pectoral herding by Whale B in Southeast Alaska (images relate to feeding 
events 5 and 10). Yellow lines denote pectorals. Red circles highlight the location of prey before pectoral movement and a gap 
in prey after pectoral movement.
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2.12 Supplemental Tables

Table S2.1. Observations associated with Whale A (#2360 in Southeast Alaska Humpback Whale Catalog) in Southeast 
Alaska (2016 to 2018). Type of behaviour, type of bubble-net, number of feeding sessions, presence (P) or absence (A) of 
pectoral herding and head tilt, number of feeding events with pectoral herding (N/V means we observed pectoral herding but 
there were no photographs or videos from that day), and prey type(s) are shown for each date and location.

Date Location Behaviour Bubble- 
net Type

Number
Feeding 
Sessions

Pectoral
Herding

Number Events with
Pectoral Herding

Number of
Head Tilts
(P/A/UNK)

Prey Type

5/13/16 Takatz Bay Feeding Solo 1 P 4 1/2/1 juvenile salmon
5/14/16 Takatz Bay Feeding Group 1 A juvenile salmon
5/20/16 Warm Springs Bay Feeding Solo 1 P 35 26/6/3 juvenile salmon
5/21/16 Warm Springs Bay Milling N/A 0 N/A N/A
5/22/16 Warm Springs Bay Feeding Solo 1 P N/V juvenile salmon
5/23/16 Kelp Bay Traveling N/A 0 N/A N/A
5/24/16 Warm Springs Bay Feeding Solo 1 P 4 1/2/1 juvenile salmon
5/25/16 Kelp Bay Traveling N/A 0 N/A N/A
5/28/16 Kelp Bay Traveling N/A 0 N/A N/A
5/30/16 Warm Springs Bay Feeding Solo 1 P 3 0/3/0 juvenile salmon

6/8/16 Kelp Bay Feeding Solo 1 P 5 1/0/4 juvenile salmon

6/16/16 Warm Springs Bay Feeding Solo 1 P N/V juvenile salmon
6/21/16 Warm Springs Bay Feeding Solo 1 P 2 0/0/2 juvenile salmon
5/17/17 Kelp Bay Feeding Solo 1 P 1 0/1/0 juvenile salmon
5/25/17 Kelp Bay Traveling N/A 0 N/A N/A
5/28/17 Kelp Bay Traveling N/A 0 N/A N/A
5/30/17 Kasnyku Bay Traveling N/A 0 N/A N/A
5/31/17 Kasnyku Bay Feeding Solo 1 P 3 0/1/2 juvenile salmon
6/1/17 Kasnyku Bay Feeding Solo 1 P 45 26/17/2 juvenile salmon
6/6/17 Kasnyku Bay Feeding Solo 1 P 5 1/3/1 juvenile salmon
6/9/17 Kasnyku Bay Feeding Solo 1 P 5 1/4/0 juvenile salmon



Table S2.1 (cont'd). Type of behaviour, type of bubble-net, number of feeding sessions, presence (P) or absence (A) of 
pectoral herding and head tilt, number of feeding events with pectoral herding (NV means we observed pectoral herding but 
there were no photographs or videos from that day), and prey type(s) are shown for each date and location.

Date Location Behaviour Bubble- 
net Type

Number
Feeding 
Sessions

Pectoral
Herding

Number Events with 
Pectoral Herding

Number of
Head Tilts
(P/A/UNK)

Prey Type

6/10/17 Kelp Bay Feeding Group 1 A Pacific herring
6/12/17 Kelp Bay Feeding Group 1 A Pacific herring

6/28/17 Kelp Bay Feeding Solo 1 P 9 5/2/2 Pacific herring or 
juvenile salmon

7/8/17 Kelp Bay Milling N/A N/A N/A
7/15/17 Point Wilson Feeding Group 1 A Pacific herring
5/22/18 Kasnyku Bay Feeding Solo 1 P 14 8/6/0 juvenile salmon
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Table S2.2. Observations associated with Whale B (#2227 in Southeast Alaska Humpback Whale Catalog) in Southeast 
Alaska (16 May 2017). Time, location, light condition, number of feeding event, feeding behaviour, prey response, and details 
surrounding surface break are shown for each video. All feeding events involved a solo bubble-net.

Video Title Time Location Light
Condition

Number of
Feeding Event

Feeding 
Behaviour

Prey
Response Surface Break

05162017_01_lateral 16:22 NE Sun 1 Lateral Lunge N/A head first

05162017_02_herd 16:35 SE Sun 2 Pectoral Herding N/A
left pectoral and head 
in same second

05162017_03_lateral 16:38 S Shade 3 Lateral Lunge N/A left pectoral first

05162017_04_lateral 16:46 W Shade 4 Lateral Lunge N/A left pectoral first

05162017_05_herd 16:59 NE Sun 5 Pectoral Herding P unknown

05162017_06_herd 17:02 NE Sun 6 Pectoral Herding P
left pectoral and head 
in same second

05162017_07_lateral 17:12 SW Shade 7 Lateral Lunge A
left pectoral and head 
in same second

05162017_08_vertical 17:14 SE Shade 8 Vertical Lunge A head first

05162017_09_vertical 17:29 SE Shade 9 Vertical Lunge P head first

05162017_10_herd 17:37 E Sun 10 Pectoral Herding P
left pectoral and head 
in same second

05162017_11_lateral 17:57 SE Shade 11 Lateral Lunge N/A head first

05162017_12_lateral 18:19 E Shade 12 Lateral Lunge N/A head first

05162017_13_vertical 18:33 NE Shade 13 Vertical Lunge N/A head first



General Conclusions

In trophic ecology, individuals of the same species are often treated as ecologically 

equivalent (DeAngelis and Gross 1992; Lomnicki and Lomnicki 1980). However, generalist 

predator populations can be made up of many individual specialists that target different prey 

(Bolnick et al. 2003). The successful adoption of new prey items within a generalist predator 

population will differ in terms of how variable individual diets are within that population 

(Pintor and Byers 2015). In Chatham Strait, at least three humpback whales have 

consistently incorporated hatchery-released juvenile salmon into their diets. Though all 

three whales successfully adopted this new prey source, each varied in their degree of 

consumption. Foraging tactics for aggregating juvenile salmon during a solo bubble-net also 

varied among individuals. This thesis contributes to our understanding of humpback whale 

predation on hatchery-reared juvenile salmon, provides insight into isotopic incorporation 

rates in the skin of humpback whales, and deepens our knowledge on foraging tactics used 

by a large marine predator.

Individual Specialization

Humpback whale predation at release sites is geographically widespread in Southeast 

Alaska (Chenoweth 2018); however, only a few individuals with specialized behaviors have 

incorporated this anthropogenically sourced prey into their annual diets. Our findings 

indicated different diet compositions of humpback whales foraging on hatchery-reared 

juvenile salmon in comparison to the local population. Stable isotope analysis showed 

minimal temporal variability in the diets of all whales sampled throughout the study area but 

suggested some degree of foraging specialization among hatchery-associated whales. The 

three hatchery-associated whales fed at significantly higher trophic levels than other 

humpback whales foraging on marine-origin prey. Differences in trophic levels, which
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persisted throughout the various layers of skin and over our two-year study, likely reflect 

differences in prey selectivity between the two groups of foraging whales. Isotopically, 

hatchery-associated whales reflected a piscivorous diet, whereas other whales consumed 

more planktivorous prey. We believe that either a) the three hatchery-associated whales 

were forage fish specialists, which led to their discovery of hatchery-released juvenile 

salmon or b) the incorporation of this new prey item led to the development of a more 

forage fish specialization. Repeat sampling and stable isotope analysis across a relatively 

broad time scale reveals differences in foraging habits beyond the incorporation of 

hatchery-released salmon as a new prey source.

Specialized foraging strategies are dependent on a stable predictable resource (West- 

Eberhard 1989). Juvenile salmon have been released from Hidden Falls Hatchery every 

spring since the late 1970s (Northern Southeast Regional Aquaculture Associaion 2019), 

generating up to ~50 years of predictable availability for predators in the area. This 

predictability, along with known release dates, provided a semi-controlled feeding 

experiment to test the incorporation and contribution of hatchery-released salmon into 

humpback whale diets. These conditions allowed us to examine stable nitrogen and carbon 

isotope incorporation and turnover rate in a way not previously possible for free-ranging 

large cetaceans. Though our stable isotope results were variable, we measured a 

significant isotopic shift in one of our hatchery-associated whales that suggests isotopic 

incorporation rates between 74 and 85 days. This time period for prey incorporation into 

humpback whale skin is slightly larger than the incorporation rates of bottlenose dolphins 

(Hicks et al. 1985) and beluga whales (70 to 75 d; St. Aubin et al. 1990). An accurate 

estimate of incorporation rate is imperative for interpreting isotopic mixing model results. 

Though we see our estimate as preliminary, we believe that it provides valuable information 
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for the temporal movement of stable isotopes through the tissue of large, baleen whales. 

Future studies could continue to use salmon hatchery releases as controlled feeding 

experiments, but would need to follow and sample hatchery-associated whales for longer 

(ideally > 100 d) to better resolve turnover rates.

Innovative Foraging Tactics

Foraging specialization within a generalist predator population is only possible if there 

are adaptive foraging behaviors at the individual level. Our observations of horizontal and 

vertical pectoral herding provided evidence of behavioral plasticity in foraging and 

suggested considerable variation among individual humpback whales, including those who 

have incorporated hatchery-released juvenile salmon into their diets. We documented two 

of the three hatchery-associated whales using ‘pectoral herding' to further condense prey 

within a solo bubble-net. This study provided the first empirical evidence of this innovative 

foraging tactic and is the first to document pectoral herding within a solo bubble-net. Though 

we believe that this behavior is likely employed by other whales foraging on non-salmonid 

prey, further documentation of solo bubble-net feeding would further our understanding 

about the conditions that promote the use of pectoral herding by humpback whales.

Summary and Implications for Future Study

The whales we observed appear to be highly flexible individuals that successfully use 

different tactics to approach the same prey and in the same situation (Wiley et al. 2011). 

Hatchery-associated whales exhibited higher trophic level diets than other whales in the 

area, suggesting some degree of specialization in foraging behavior. However, all three 

hatchery-associated whales employed a different tactic for foraging on juvenile hatchery- 
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released salmon: horizontal pectoral herding, vertical pectoral herding, and streamline 

lunge. This flexibility may enable individual humpback whales to effectively acclimate to 

variable environments while gaining potential survivorship and fitness benefits (Hadfield and 

Strathmann 1996). Diversity in foraging behaviors could be advantageous to the humpback 

whale population as they experience changes in their local environment due to climate 

change. Humpback whales have been labeled as a promising indicator species because 

they fed on a diverse array of prey and are distributed throughout the world's oceans 

(Fleming et al. 2016). Tracking the variations in humpback whale behavior will provide 

crucial insight into the broader changes our oceans will experience, but they may not be 

prescient indicators for the fates of more specialized marine species.

Though we were unable to effectively estimate the contribution of hatchery salmon to the 

diets of humpback whales, this work provides baseline information with which to build upon 

in future study. We provided a preliminary estimate of isotopic incorporation rate and have 

identified the need for more extensive prey sampling in nearshore waters. Our study also 

deepened our knowledge about how these animals are able to exploit a non-schooling prey 

species of considerable commercial value. Each of these components bring us a few steps 

closer to understanding the predation impact of humpback whales on the survival of juvenile 

salmon and the benefits of hatchery production. We illustrated that multiple whales have 

similar foraging preferences but employ disparate foraging tactics to consume the same 

prey. Future study should focus on describing the behavior of these individual whales on a 

large temporal scale to better understand their overall foraging behaviors. Understanding 

the behaviors that drive humpback whale predation will help hatchery management in 

Southeast Alaska and therefore the promotion of a sustainable salmon fishery. The 

knowledge we gain about the predation of humpback whales incorporating hatchery- 
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released salmon into their diet can be used to address the impact this predator might have 

on other commercially important fish species.
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Appendix: Research Approval

(907) 474-7800 

(907) 474-5993 fax 

uaf-iacuc@alaska.edu 

www.uaf.edu/iacuc

Institutional Animal Care and Use Committee
909 N Koyukuk Dr. Suite 212, P.O. Box 757270, Fairbanks, Alaska 99775-7270

May 17, 2016

To: Janice Straley
Principal Investigator

From: University Of AIaska Fairbanks IACUC
Re: [907314-2] Can Stable Isotopes be Used to Estimate the Contribution of Hatchery 

Salmon to the Diet of Humpback Whales?

The IACUC reviewed and approved the Response/Follow-Up referenced above by Designated Member 
Review.

Received: May 15, 2016
Approval Date: May 17, 2016
Initial Approval Date: May 17, 2016
Expiration Date: May 17, 2017

This action is included on the June 9, 2016 IACUC Agenda.

Pl responsibilities:

• Acquire and maintain all necessary permits and permissions prior to beginning work on this protocol. 
Failure to obtain Or maintain valid permits is considered a violation of an IACUC protocol and could 
result in revocation of IACUC approval.

• Ensure the protocol is up-to-date and submit modifications to the IACUC when necessary (see form 
006 "Significant changes requiring IACUC review" in the IRBNet Forms and Templates)

• inform research personnel that only activities described in the approved IACUC protocol can be 
performed. Ensure personnel have been appropriately trained to perform their duties.

• Be aware Of status of other packages in IRBNet, this approval only applies to this package and 
the documents it contains; it does not imply approval for other revisions or renewals you may have 
submitted to the IACUC previously.

• Ensure animal research personnel are aware of the reporting procedures on the following page.
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Appendix: Research Approval (cont'd)

(907) 474-7800 

(907) 474-5993 fax 

uaf-iacuc@alaska.edu 

www.uaf.edu/iacuc

Institutional Animal Care and Use Committee
909 N Koyukuk Dr. Suite 212, P.O. Box 757270, Fairbanks, Alaska 99775-7270

April 11, 2017

To: Janice Straley
Principal Investigator

From: University of AIaska Fairbanks IACUC
Re: [907314-4] Can Stable Isotopes be Used to Estimate the Contribution of Hatchery 

Salmon to the Diet of Humpback Whales?

The IACUC reviewed and approved the modification to the Personnel List referenced above by 
Administrative Review.

Received:
Approval Date:
Initial Approval Date:
Expiration Date:

March 21, 2017
April 11, 2017
May 17, 2016
May 17, 2018

This action is included on the May 11, 2017 IACUC Agenda.

Pl responsibilities:

• Acquire and maintain all necessary permits and permissions prior to beginning work on this protocol. 
Failure to obtain Or maintain valid permits is considered a violation of an IACUC protocol and could 
result in revocation of IACUC approval.

• Ensure the protocol is up-to-date and submit modifications to the IACUC when necessary (see form 
006 "Significant changes requiring IACUC review" in the IRBNet Forms and Templates)

• inform research personnel that only activities described in the approved IACUC protocol can be 
performed. Ensure personnel have been appropriately trained to perform their duties.

• Be aware Of status of other packages in IRBNet; this approval only applies to this package and 
the documents it contains; it does not imply approval for other revisions or renewals you may have 
submitted to the IACUC previously.

• Ensure animal research personnel are aware of the reporting procedures on the following page.
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Appendix: Research Approval (cont'd)

STATE OF ALASKA 
DEPARTMENT OF FISH AND GAME 

P.O. Box 115526
JUNEAU, ALASKA 99811-5526

FISH RESOURCE PERMIT
(For Scientific/Collection Purposes)

Permit No. CF-16-049

Expires: 12/31/2016

This permit authorizes: Jan Straley
(whose signature is required on page 3 for permit validation) 

of
University of Alaska Southeast 

1332 Seward Ave., Sitka, AK 99835 
(907)747-7779 jmstraley@uas.alaska.edu

to conduct the following activities from February 16, 2016 to December 31, 2016 in accordance with AS 16.05.930 and AS 
16.05.340(b).

Purpose: To identify prey of humpback whales, or other large cetaceans.

Location: Southeast Alaska, including offshore (54°-60°N, 132°-142°W), and Prince William Sound (60°-61°N, 144°-148°W)

Species: See Species List on pages 3-4.

Method of Collection: Dip nets, trawls, hook-and-line, minnow traps, gill nets, zooplankton nets, cast nets and light traps. 
See Stipulations section.

Disposition: Collected specimens will be sacrificed and frozen or preserved for analysis. See Stipulations section.

A COLLECTION REPORT IS DUE January 30, 2017 and a COMPLETION REPORT IS DUE June 30, 2017. See 
Stipulations section for more information. Data from such reports are considered public information. Reports must be 
submitted to the Alaska Department of Fish and Game, Division of Commercial Fisheries, PO Box 115526, Juneau, AK 
99811-5526, attention Michelle Morris (907-465-4724; dfg.fmpd.permitcoordinator@alaska.gov). A report is required 
whether or not collecting activities were undertaken.
GENERAL CONDITIONS, EXCEPTIONS AND RESTRICTIONS
1. This permit must be carried by person(s) specified during approved activities who shall show it on request to persons authorized to 

enforce Alaska's fish and game laws. This permit is nontransferable and will be revoked or renewal denied by the Commissioner of 
Fish and Game if the permittee violates any of its conditions, exceptions or restrictions. No redelegation of authority may be allowed 
under this permit unless specifically noted.

2. No specimens taken under authority hereof may be sold, bartered, or consumed. All specimens must be deposited in a public 
museum or a public scientific or educational institution unless otherwise stated herein. Subpermittees shall not retain possession of 
live animals or other specimens.

3. The permittee shall keep records of all activities conducted under authority of this permit, available for inspection at all reasonable 
hours upon request of any authorized state enforcement officer.

4. Permits will not be renewed until detailed reports, as specified in the Stipulation section, have been received by the department.
5. UNLESS SPECIFICALLY STATED HEREIN, THIS PERMIT DOES NOT AUTHORIZE the exportation of specimens or the taking of 

specimens in areas otherwise closed to hunting and fishing; without appropriate licenses required by state regulations; during closed 
seasons; or in any manner, by any means, at any time not permitted by those regulations.

Peter Bangs 2/16/16__________
Permit Coordinator
Division of Commercial Fisheries
Alaska Department of Fish and Game
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Appendix: Research Approval (cont'd)

STATE OF ALASKA 
DEPARTMENT OF FISH AND GAME

P.O. Box 115526
JUNEAU, ALASKA 99811-5526

Permit No. CF-17-056

Expires: 12/31/2017

FISH RESOURCE PERMIT 
(For Scientific/collection Purposes)

This permit authorizes: Jan Straley
(whose signature is required on page 3 for permit validation) 

of
University Of AIaska Southeast 

1332 Seward Ave., Sitka. AK 99835 
(907)747-7779 imstraley@uas.alaska.edu

to conduct the following activities from March 1, 2017 to December 31, 2017 in accordance with AS 16.05.930 and AS 
16.05.340(b).

Purpose: To identify prey of humpback whales, or other large cetaceans.

Location: Southeast AIaska, including offshore (54°-60°N, 132°-142°W)

Species: See Species List on pages 3-4.

Method of Collection: Dip nets, trawls, hook-and-line, minnow traps, gill nets, zooplankton nets, cast nets and light traps. 
See Stipulations section.

Disposition: Collected specimens will be sacrificed and frozen or preserved for analysis. See Stipulations section.

A COLLECTION REPORT IS DUE January 30, 2018 and a COMPLETION REPORT IS DUE June 30, 2018. See 
Stipulations section for more information. Data from such reports are considered public information. Reports must be 
submitted to the Alaska Department of Fish and Game, Division of Commercial Fisheries, PO Box 115526, Juneau, AK 
99811-5526, attention Michelle Morris (907-465-4724; dfg.fmpd.permitcoordinator@alaska.gov). A report is required 
whether or not collecting activities were undertaken.
GENERAL CONDITIONS, EXCEPTIONS AND RESTRICTIONS
1. This permit must be carried by person(s) specified during approved activities who shall show it on request to persons authorized to 

enforce Alaska's fish and game laws. This permit is nontransferable and will be revoked or renewal denied by the Commissioner of 
Fish and Game if the permittee violates any of its conditions, exceptions or restrictions. No redelegation of authority may be allowed 
under this permit unless specifically noted.

2. No specimens taken under authority hereof may be sold, bartered, or consumed. All specimens must be deposited in a public 
museum or a public scientific or educational institution unless otherwise stated herein. Subpermittees shall not retain possession of 
live animals or other specimens.

3. The permittee shall keep records of all activities conducted under authority of this permit, available for inspection at all reasonable 
hours upon request of any authorized state enforcement officer.

4. Permits will not be renewed until detailed reports, as specified in the Stipulation section, have been received by the department.
5. UNLESS SPECIFICALLY STATED HEREIN, THIS PERMIT DOES NOT AUTHORIZE the exportation of specimens or the taking of 

specimens in areas otherwise closed to hunting and fishing; without appropriate licenses required by state regulations; during closed 
seasons; or in any manner, by any means, at any time not permitted by those regulations.

Peter Bangs 3/15/17_________
Deputy or Assistant Director 
Division of Commercial Fisheries
Alaska Department of Fish and Game
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Appendix: Research Approval (cont'd)

UNITED STATES DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 
NATIONAL MARINE FISHERIES SERVICE
Silver Spring, MD 20910

2015
Ms. Janice Straley
University of Alaska Southeast
1332 Seward Avenue
Sitka, Alaska 99835

Dear Ms. Straley:

The National Marine Fisheries Service has issued Permit No. 14122-01, which amends and 
replaces Permit No. 14122, for research activities on marine mammals. This minor amendment 
extends the duration of your permit one year. The changes to specific Terms and Conditions are 
reflected in bold font.

You may continue the research activities authorized in Permit No. 14122-01 until (1) our agency 
has made a decision on your new application, or (2) you have exhausted the total number of 
takes authorized for the fifth year of the permit, whichever occurs first.

In addition to extending your permit, we have added Dr. Andrew Szabo as a Co-investigator (CI) 
per your request and pursuant to Condition C.6. Please note that as Permit Holder, you are 
ultimately responsible for the activities of individuals operating under the authority of this permit 
and the taking, import, export and any related activities conducted under the permit. You must 
be on site during activities conducted under this permit unless a CI is present to act in place of 
the PI. Please ensure the CIs receive a copy of this letter and the permit. Personnel listed in the 
permit may only use the permit with your permission as Permit Holder.

This letter also confirms that you may use dart tags with either two or three barbs. You 
requested authority to use three-barb tags to increase tag retention in cases where two-barb tags 
have failed. The anticipated effects from using three-barbed dart tags will be less than that of the 
fully implantable tags, which you are already authorized to use. As your take table already lists 
dart tags, no change to your permit is required.

Please note that some of your research may require a special use permit from the Alaska 
Maritime National Wildlife Refuge. Please contact the Refuge office at 2355 Kachemak Bay 
Drive, Suite 101, Homer, Alaska 99603 (phone: 907-235-6546; FAX: 907-235-7783).

As a reminder, import and export of species, or parts of species, listed on the Appendices to the 
Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) 
requires a CITES Permit. For further information please contact Ms. Lisa Lierheimer, U.S. Fish 
and Wildlife Service (USFWS), Division Of Management Authority (DMA), Branch of Permits, 
MS: IA, 5275 Leesburg Pike, Falls Church, VA 22041-3803 (1-800-358-2104).

Printed on Recycled Paper
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Appendix: Research Approval (cont'd)

UNITED STATES DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 
NATIONAL MARINE FISHERIES SERVICE
Silver Spring, MD 20910

Ms. Janice Straley
University of Alaska Southeast
1332 Seward Avenue MAY 1 7 2016
Sitka, Alaska 99835

Dear Ms. Straley:

Thank you for your request to add Madison Kosma as a Co-investigator (CI) to Permit No. 
14122-01 to conduct cetacean research in Alaskan waters. Following General Condition C.6 of 
your permit, Ms. Kosma has been included as a CI and is authorized to conduct all research 
activities specified in the permit.

Please note that as Permit Holder and Principal Investigator, you are ultimately responsible for 
the activities Of individuals operating under the authority of this permit, including the taking, 
import, export and any related activities. You must be on site during activities conducted under 
this permit unless a CI is present to act in your place. Please attach this letter to Permit No. 
14122-01 and ensure the CIs receive a copy of this letter and the permit. Personnel listed in the 
permit may only use the permit with your permission as Permit Holder.

It is your responsibility to notify the NMFS Assistant Regional Administrator for Protected 
Resources at least two weeks before planned fieldwork begins, as specified in your permit. 
Notification must include:

• locations and/or survey routes,
• estimated dates, and
• number and roles of participants.

Please contact Carrie Hubard or Amy Sloan at (301) 427-8401 or via email at 
carrie.w.hubard@noaa.gov or amy.sloan@noaa.gov if you have questions.

Chief, Permits and Conservation Division 
Office of Protected Resources
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Appendix: Research Approval (cont'd)

UNITED STATES DEPARTMENT of coMMERcE 
National Oceanic and Atmospherlc AdmInistratIon 
NATIONAL MARINE FISHERIES SERVICE
Silver Spring, MD 2□91O

JUL 2 0 2017

Janice Straley
University of Alaska Southeast
1332 Seward Ave
Sitka, Alaska 99835

Dear Ms. Straley:

The National Marine Fisheries Service (NMFS) has issued Permit No. 18529-01 to you, for 
research activities on marine mammals. We have removed the condition that limited you to three 
approaches per day, added unmanned aircraft system activities, and added two Co-investigators. 
The changes to specific Terms and Conditions are reflected in bold font.

This permit is effective upon your signature and valid through August 31, 2021. To use your 
permit:

1. Read the permit, including attachments. If you have questions, call your permit analyst - 
Carrie Hubard or Amy Hapeman - at 301-427-8401 before signing the permit.

2. Sign and date both the original and “File Copy” signature pages.

3. Keep the original signature page with your permit.
4. Return the “File Copy” signature page to our office by:

a. Email to your permit analyst;
b. Fax (301-713-0376); or
c. Mail (NMFS Permits and Conservation Division (F∕PR1), 1315 East-West Hwy, 

Silver Spring, MD 20910).

Some of your research may require a special use permit from the Alaska Maritime National 
Wildlife Refuge. Please contact the Refuge office at 2355 Kachemak Bay Drive, Suite 101, 
Homer, Alaska 99603; phone (907)235-6546; fax (907)235-7783.

The import and export of species, or parts of species, listed on the Appendices to the Convention 
on International Trade in Endangered Species of Wild Fauna and Flora (CITES) requires a 
CΓΓES Permit. For further information please contact Ms. Mary Cogliano, U.S. Fish and 
Wildlife Service (USFWS), Division Of Management Authority (DMA), Branch of Permits, MS: 
IA, 5275 Leesburg Pike, Falls Church, VA 22041-3803 (1-800-358-2104).

Unmanned aircraft systems (UAS) fall under the jurisdiction of the Federal Aviation 
Administration (FAA; http://www.faa.gov/). You must be compliant with FAA requirements 
when operating UAS under this permit. The FAA considers scientific research as either public
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Appendix: Research Approval (cont'd)

UNITED STATES DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 
NATIONAL MARINE FISHERIES SERVICE
Silver Spring, MO 20910

JUL 1 1 2018Janice Straley
University of Alaska Southeast
1332 Seward Ave 
Sitka, Alaska 99835

Dear Ms. Straley:

Thank you for your request to remove Simon Niblett as a Co-investigator (CI) from Permit No. 
18529-01 and to authorize Kelly Cates and Madison Kosma as unmanned aircraft system (UAS) 
pilots. Following General Condition C.7 of your permit, we’ve removed Mr. Niblett and 
changed Ms. Cates’ and Ms. Kosma’s permitted roles to show that they are now authorized as 
UAS pilots. An updated Appendix 2 is attached.

Please note that as Permit Holder and Principal Investigator, you are ultimately responsible for 
the activities of individuals operating under the authority of this permit, including the taking and 
any related activities. You must be on site during activities conducted under this permit unless a 
CI is present to act in your place. Please attach this letter to Permit No. 18529-01 and ensure the 
CIs receive a copy of this letter and the permit. Personnel listed in the permit may only use the 
permit with your permission as Permit Holder.

It is your responsibility to notify the NMFS Assistant Regional Administrator for Protected 
Resources at least two weeks before planned fieldwork begins, as specified in your permit. 
Notification must include:

• locations and/or survey routes,
• estimated dates, and
• number and roles of participants.

Please contact Carrie Hubard or Sara Young at (301) 427-8401 or via email at 
carrie.w.hubard@noaa.gov or sara.young@noaa.gov if you have questions.

Sincerely,

Chief, Permits and Conservation Division 
Office Of Protected Resources

Enclosure
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