56 research outputs found

    Observation of two Andreev-like energy scales in La2xSrxCuO4La_{2-x}Sr_{x}CuO_4 superconductor/normal-metal/superconductor junctions

    Full text link
    Conductance spectra measurements of highly transparent ramp-type junctions made of superconducting La2xSrxCuO4La_{2-x}Sr_{x}CuO_4 electrodes and non superconducting La1.65Sr0.35CuO4La_{1.65}Sr_{0.35}CuO_4 barrier are reported. At low temperatures below TcT_c, these junctions have two prominent Andreev-like conductance peaks with clear steps at energies Δ1\Delta_1 and Δ2\Delta_2 with Δ2>2Δ1\Delta_2 > 2\Delta_1. No such peaks appear above TcT_c. The doping dependence at 2 K shows that both Δ1\Delta_1 and Δ2\Delta_2 scale roughly as TcT_c. Δ1\Delta_1 is identified as the superconducting energy gap, while a few scenarios are proposed as for the origin of Δ2\Delta_2.Comment: 19 pages, 11 figure

    Magnetic field dependence of the proximity-induced triplet superconductivity at ferromagnet/superconductor interfaces

    Get PDF
    Long-ranged superconductor proximity effects recently found in superconductor-ferromagnetic (S-F) systems are generally attributed to the formation of triplet-pairing correlations due to various forms of magnetic inhomogeneities at the S-F interface. In order to investigate this conjecture within a single F layer coupled to a superconductor, we performed scanning tunneling spectroscopy on bilayers of La2/3Ca1/3MnO3 (LCMO) ferromagnetic thin-films grown on high temperature superconducting films of YBa2Cu3O7- (YBCO) or Pr1.85Ca0.15CuO4 (PCCO) under various magnetic fields. We find a strong correlation between the magnitude of superconductor-related spectral features measured on the LCMO layer and the degree of magnetic inhomogeneity controlled by the external magnetic field. This corroborates theoretical predictions regarding the role played by magnetic inhomogeneities in inducing triplet-pairing at S-F interfaces.This research was supported in parts by the joint German-Israeli DIP Project (G.K. and O.M.), the United States-Israel Binational Science Foundation (O.M.), the Harry de Jur Chair in Applied Science (O.M.), the Karl Stoll Chair in advanced materials at the Technion (G.K.), the Leverhulme Trust through an International Network Grant (J.W.A.R., M.G.B. and O.M.) and the Royal Society (J.W.A.R.).This is the accepted manuscript version. The final published version is available from the publishers at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.180506. © 2014 AP

    Organizational Heterogeneity of Vertebrate Genomes

    Get PDF
    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as “texts” using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter - GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences

    Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools

    Get PDF
    In a project on the biodiversity of chickens funded by the European Commission (EC), eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line) and the most polymorphic population (Gallus gallus spadiceus) were, respectively, as follows: number of alleles per locus, per population: 3.5, 1.3 and 5.2; average gene diversity across markers: 0.47, 0.05 and 0.64; and proportion of polymorphic markers: 0.91, 0.25 and 1.0. These were in good agreement with the breeding history of the populations. For instance, unselected populations were found to be more polymorphic than selected breeds such as layers. Thus DNA pools are effective in the preliminary assessment of genetic variation of populations and markers. Mean genetic distance indicates the extent to which a given population shares its genetic diversity with that of the whole tested gene pool and is a useful criterion for conservation of diversity. The distribution of population-specific (private) alleles and the amount of genetic variation shared among populations supports the hypothesis that the red jungle fowl is the main progenitor of the domesticated chicken

    Mate choice for genetic quality when environments vary: suggestions for empirical progress

    Get PDF
    Mate choice for good-genes remains one of the most controversial evolutionary processes ever proposed. This is partly because strong directional choice should theoretically deplete the genetic variation that explains the evolution of this type of female mating preferences (the so-called lek paradox). Moreover, good-genes benefits are generally assumed to be too small to outweigh opposing direct selection on females. Here, we review recent progress in the study of mate choice for genetic quality, focussing particularly on the potential for genotype by environment interactions (GEIs) to rescue additive genetic variation for quality, and thereby resolve the lek paradox. We raise five questions that we think will stimulate empirical progress in this field, and suggest directions for research in each area: 1) How is condition-dependence affected by environmental variation? 2) How important are GEIs for maintaining additive genetic variance in condition? 3) How much do GEIs reduce the signalling value of male condition? 4) How does GEI affect the multivariate version of the lek paradox? 5) Have mating biases for high-condition males evolved because of indirect benefits

    Signature of proximity-induced p x

    No full text
    Thin film junctions and bilayers of the doped topological insulator Bi2Se3\rm Bi_2Se_3 and the s-wave superconductor NbN were found to exhibit conductance spectra with prominent zero bias and coherence peaks. Various tunneling models with different pair potentials have failed to fit our data, except for the triplet px+ipyp_x+ip_y pair potential, which breaks time reversal symmetry, but yielded reasonably good fits. This provides evidence for proximity induced triplet superconductivity in the Bi2Se3\rm Bi_2Se_3 layer near the interface with the NbN film.Comment: Accepted for publication in Europhysics Letter

    Complex dynamics of multilocus systems subjected to cyclical selection.

    No full text
    corecore