41 research outputs found

    Angiotensin II differentially induces matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 production and disturbs MMP/TIMP balance

    Get PDF
    Angiotensin II, the main component of the renin-angiotensin system, is associated with cardiovascular diseases such as hypertension, vascular remodeling and inflammation. Remodeling process results from dysregulation of Matrix Metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). MMPs are considered as important target genes for angiotensin II. The aim of this study was to determine the effects of angiotensin II on MMP-9 and TIMP-1 production and MMP/TIMP balance in a monocytic cell type. Human monocytic U-937 cells were cultured and treated with 100 nM angiotensin II. Supernatants were analyzed for MMP-9 and TIMP-1 using ELISA and zymography methods. Real-time PCR was utilized to evaluate relative MMP-9 and TIMP-1 genes expression following treatments. Cytotoxicity potentials of treatments were determined by assaying lactate dehydrogenase leakage from the cells. Stimulation of the monocytic cells with angiotensin II significantly increased MMP-9 and TIMP-1 secretion as measured by ELISA (p<0.05). It also augmented gelatinolytic activity of MMP-9 in the conditioned media as much as 49 (p<0.05). Incubation of the cells with angiotensin II for 12 hr increased MMP-9 and TIMP-1 gene expression 2.7 and 1.8 folds, respectively (p<0.05). Angiotensin II treatments did not establish significant cytotoxic effects. In summary, our data provide further evidences that monocytic MMP-9 is a major effector of angiotensin II. It is induced more efficiently than TIMP-1 by angiotensin II that leads to MMP/TIMP imbalance. Our data also reveal the pivotal participation of these cells in pathological cardiovascular remodeling mediated by angiotensin II. Copyright © 2010, Avicenna Journal of Medical Biotechnology. All rights reserved

    Adenosine pretreatment attenuates angiotensin II-mediated p38 MAPK activation in a protein kinase A dependent manner

    Get PDF
    Background: Adenosine is known as a protective and anti-inflammatory nucleoside. Angiotensin II is the main hormone of the renin-angiotensin system. It is associated with endothelial permeability, recruitment, and activation of the immune cells through induction of inflammatory mediators. Matrix metalloproteinase-9 (MMP-9) plays an important role in inflammatory processes mediated by macrophages. Objectives: Investigate whether adenosine pretreatment modulates angiotensin II-induced MMP-9 expression and activation of signaling molecules. Methods: Human monocytic U-937 cells were treated with either adenosine or angiotensin II alone or angiotensin II following a pretreatment with adenosine. Supernatants were analyzed for MMP-9 activity by zymography method. MMP-9 gene expression was analyzed using real-time PCR. Activation of inflammatory mediators IκB-α, NF-κB, JNK, p38 MAPK, and STAT3 were analyzed by a multi-target ELISA kit. Association of Protein kinase A (PKA) in adenosine effects was studied by pre-incubation with H89, a selective PKA inhibitor. Results: Treatment of the cells with angiotensin II significantly increased MMP-9 production (p <0.05). Adenosine pretreatment did not attenuate this angiotensin II effect. Angiotensin II treatment induced NF-κB, JNK and p38 activation. Pretreatment with adenosine prior to angiotensin II stimulation showed a 40 inhibitory effect on p38 induction (p <0.05). This effect was reversed by PKA inhibition. Conclusion: The present data confirmed that monocytic MMP-9 was a target gene for angiotensin II. Adenosine pretreatment did not inhibit MMP-9 increase in response to angiotensin II. However, it showed a potential inhibitory effect on angiotensin II inflammatory signaling

    Angiotensin II induces NF-κB, JNK and p38 MAPK activation in monocytic cells and increases matrix metalloproteinase-9 expression in a PKC- and Rho kinase-dependent manner

    Get PDF
    Angiotensin II (ANG II), the main effector of the renin-angiotensin system, is implicated in endothelial permeability, recruitment and activation of immune cells, and also vascular remodeling through induction of inflammatory genes. Matrix metalloproteinases (MMPs) are considered to be important inflammatory factors. Elucidation of ANG II signaling pathways and of possible cross-talks between their components is essential for the development of efficient inhibitory medications. The current study investigates the inflammatory signaling pathways activated by ANG II in cultures of human monocytic U-937 cells, and the effects of specific pharmacological inhibitors of signaling intermediates on MMP-9 gene (MMP-9) expression and activity. MMP-9 expression was determined by real-time PCR and supernatants were analyzed for MMP-9 activity by ELISA and zymography methods. A multi-target ELISA kit was employed to evaluate IκB, NF-κB, JNK, p38, and STAT3 activation following treatments. Stimulation with ANG II (100 nM) significantly increased MMP-9 expression and activity, and also activated NF-κB, JNK, and p38 by 3.8-, 2.8- and 2.2-fold, respectively (P < 0.01). ANG II-induced MMP-9 expression was significantly reduced by 75 and 67, respectively, by co-incubation of the cells with a selective inhibitor of protein kinase C (GF109203X, 5 μM) or of Rho kinase (Y-27632, 15 μM), but not with inhibitors of phosphoinositide 3-kinase (wortmannin, 200 nM), tyrosine kinases (genistein, 100 μM) or of reactive oxygen species (α-tocopherol, 100 μM). Thus, protein kinase C and Rho kinase are important components of the inflammatory signaling pathways activated by ANG II to increase MMP-9 expression in monocytic cells. Both signaling molecules may constitute potential targets for effective management of inflammation

    Molecular detection of prostate specific antigen in patients with prostate cancer or benign prostate hyperplasia the first investigation from Iran

    Get PDF
    Prostate cancer is the second common form of cancer in men. Detection of circulating Prostate Specific Antigen (PSA) transcripts has effectively been used for early diagnosis of prostate cancer cells. This investigation employed a reverse transcriptase polymerase chain reaction (RT-PCR) technique to distinguish the patients with either localized or metastatic prostate cancer (CaP) vs. Benign Prostate Hyperplasia (BPH) and control subjects, as compared with clinical and pathological records. With reservation of ethical issues, blood samples were collected from 60 cases. Based on pathological and clinical findings, 25 patients (20 with localized cancer, 5 with metastatic), 22 with BPH, and 13 healthy (including 3 females) subjects as negative controls, were selected from Shariati, Mehrad, Sina,, Khatam and Atie Hospitals in Tehran, Iran. RT-PCR for a 260 bp PSA transcript was then performed. Clinical and pathological records were used for the assessment and comparison of PSA RT-PCR results. None of the control subjects and BPH (with 7 exceptions) were found positive by RT-PCR (Relative specificity= 72.7). In patients with prostate cancer, 21 out of 25 were found PSA positive (Relative sensitivity= 83.4) and the remaining 3 have been shown to be PSA negative (Positive predictive value= 83.4). All of 5 metastatic patients (100) revealed PSA positive results. Our data reflects the clinical relevance and significance of RT-PCR results as assessed with clinical and pathological examinations. PSA RT-PCR might be used as a powerful means for diagnosis, even when either pathological or clinical findings are negative, and could be employed for further molecular epidemiology surveys

    Umbelliprenin-coated Fe3O4 magnetite nanoparticles: Antiproliferation evaluation on human Fibrosarcoma cell line (HT-1080)

    Get PDF
    The potential applications of Fe3O4 magnetite nanoparticles (MNPs) in nanomedicine as drug delivery systems are well known. In this study we prepared umbelliprenin-coated Fe3O4 MNPs and evaluated the antiproliferative effect of combination in vitro. After synthesis of Fe3O4 MNPs, particles were characterized by transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction spectroscopy techniques. The natural candidate compound — umbelliprenin— was isolated and identified and umbelliprenin-coated Fe3O4 MNPs were prepared, using precipitation method. The surface chemistry of umbelliprenin-coated Fe3O4 MNPs as well as their thermal decomposition characteristics was examined using Fourier transform infrared spectroscopy and Thermogravimetric Analyzer equipment, respectively. HT-1080 cells were cultured until the logarithmic phase of growth, and MTT assay was successfully carried out to evaluate the possible cytotoxic effects of umbelliprenin-coated Fe3O4 MNPs in viable cells in vitro. The results demonstrated that umbelliprenin has moderate antiproliferative effects with IC50 value of 50 μg/mL. However, the combination of umbelliprenin and Fe3O4 MNPs showed the IC50 value of 9 μg/mL. In other words, cell proliferation decreased to the remarkably-low proportion of 45% after treating cells with umbelliprenin-coated Fe3O4 MNPs. This suggests that with the aid of nanoparticles as carriers, natural products may have even broader range of medical applications in future

    Collagen-Binding Peptidoglycans Inhibit MMP Mediated Collagen Degradation and Reduce Dermal Scarring

    Get PDF
    Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13) mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA) vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM) analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing

    A cell culture model using rat coronary artery adventitial fibroblasts to measure collagen production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have developed a rat cell model for studying collagen type I production in coronary artery adventitial fibroblasts. Increased deposition of adventitial collagen type I leads to stiffening of the blood vessel, increased blood pressure, arteriosclerosis and coronary heart disease. Although the source and mechanism of collagen deposition is yet unknown, the adventitia appears to play a significant role. To demonstrate the application of our cell model, cultured adventitial fibroblasts were treated with sex hormones and the effect on collagen production measured.</p> <p>Methods</p> <p>Hearts (10–12 weeks) were harvested and the left anterior descending coronary artery (LAD) was isolated and removed. Tissue explants were cultured and cells (passages 2–4) were confirmed as fibroblasts using immunohistochemistry. Optimal conditions were determined for cell tissue harvest, timing, proliferation and culture conditions. Fibroblasts were exposed to 10<sup>-7 </sup>M testosterone or 10<sup>-7 </sup>M estrogen for 24 hours and either immunostained for collagen type I or subjected to ELISA.</p> <p>Results</p> <p>Results showed increased collagen staining in fibroblasts treated with testosterone compared to control and decreased staining with estrogen. ELISA results showed that testosterone increased collagen I by 20% whereas estrogen decreased collagen I by 15%.</p> <p>Conclusion</p> <p>Data demonstrates the usefulness of our cell model in studying the specific role of the adventitia apart from other blood vessel tissue in rat coronary arteries. Results suggest opposite effects of testosterone and estrogen on collagen synthesis in the rat coronary artery adventitial fibroblasts.</p

    Solving Rank One Perturbed Linear Diophantine Systems Using the Hermite Normal Form

    No full text
    We show how we can obtain the general solution of rank one perturbed linear Diophantine systems (A + uvT )x = b using only information from the application of the Hermite normal form algorithm to the corresponding linear Diophantine system Ax = b. The empirical results show that use of the proposed algorithm may result in saving considerable computing tim
    corecore