265 research outputs found

    1-Loop improved lattice action for the nonlinear sigma-model

    Full text link
    In this paper we show the Wilson effective action for the 2-dimensional O(N+1)-symmetric lattice nonlinear sigma-model computed in the 1-loop approximation for the nonlinear choice of blockspin Φ(x)\Phi(x), \Phi(x)= \Cav\phi(x)/{|\Cav\phi(x)|},where \Cav is averaging of the fundamental field ϕ(z)\phi(z) over a square xx of side a~\tilde a. The result for SeffS_{eff} is composed of the classical perfect action with a renormalized coupling constant βeff\beta_{eff}, an augmented contribution from a Jacobian, and further genuine 1-loop correction terms. Our result extends Polyakov's calculation which had furnished those contributions to the effective action which are of order lna~/a\ln \tilde a /a, where aa is the lattice spacing of the fundamental lattice. An analytic approximation for the background field which enters the classical perfect action will be presented elsewhere.Comment: 3 (2-column format) pages, 1 tex file heplat99.tex, 1 macro package Espcrc2.sty To appear in Nucl. Phys. B, Proceedings Supplements Lattice 9

    Analytic calculation of the 1-loop effective action for the O(N+1)-symmetric 2-dimensional nonlinear sigma-model

    Get PDF
    Polyakov's calculation of the effective action for the 2d nonlinear sigma-Model is generalized by purely analytic means to include contributions which are not UV-divergent and which depend on the choice of block spin. An analytic approximation to the background field which determines the classical perfect action is given, and approximations to the 1-loop correction are found. The results should be useful for numerical simulations.Comment: 38 p, 1 figur

    Self-consistent Calculation of Real Space Renormalization Group Flows and Effective Potentials

    Get PDF
    We show how to compute real space renormalization group flows in lattice field theory by a self-consistent method. In each step, the integration over the fluctuation field (high frequency components of the field) is performed by a saddle point method. The saddle point depends on the block-spin. Higher powers of derivatives of the field are neglected in the actions, but no polynomial approximation in the field is made. The flow preserves a simple parameterization of the action. In this paper we treat scalar field theories as an example.Comment: 52 pages, uses pstricks macro, three ps-figure

    Rheological modelling of viscoelastic fluid in a generic gap of screw pump

    Get PDF
    In this study, the leakage of a non-Newtonian fluid, i.e. silicone oil, in a generic gap was numerically investigated. A CFD tool is used to determine the relationship between leakage flow, gap length and pressure difference. The investigated fluid is viscoelastic and its properties are modelled by a Maxwell equation. The Maxwell model can be used to precisely define the phenomenon of stress relaxation. Moreover, a comparison of the viscosity of measured data with simplified models shows that the Maxwell model is best suited for viscosity prediction. Furthermore, simulation results showed that at low pressures, leakage is reduced by decreasing the gap angle. However, this effect changes with increasing viscosity and relaxation time of the molecule. To determine the pressure drop, the Bagley plot is used. The results confirmed that as the shear rate increases, the elastic pressure drop values increase. In addition, the leakage flow increases with an increasing slenderness ratio

    Nonperturbative Evolution Equation for Quantum Gravity

    Get PDF
    A scale--dependent effective action for gravity is introduced and an exact nonperturbative evolution equation is derived which governs its renormalization group flow. It is invariant under general coordinate transformations and satisfies modified BRS Ward--Identities. The evolution equation is solved for a simple truncation of the space of actions. In 2+epsilon dimensions, nonperturbative corrections to the beta--function of Newton's constant are derived and its dependence on the cosmological constant is investigated. In 4 dimensions, Einstein gravity is found to be ``antiscreening'', i.e., Newton's constant increases at large distances.Comment: 35 pages, late

    Roles for the Conserved Spc105p/Kre28p Complex in Kinetochore-Microtubule Binding and the Spindle Assembly Checkpoint

    Get PDF
    Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain approximately 70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes

    An agenda for rethinking mid-career master programs in public administration

    Get PDF
    The pace of societal change and the development of societal challenges have speeded up considerably during the last couple of decades, with substantial impact on different levels, i.e. ranging from global to local, or from business to government. When focusing on the public domain, these changes and challenges have had a major impact on public professionals, who face different and frequently changing questions. Mid-career programs in Public Administration (MPA) have the mission to support enrolled professionals in dealing with these changes and challenges. This article is about the development of such MPAs. Both substantive and didactic development is needed. To counter institutional inertia it seems vital to institutionalize a regular rethinking and adaptation of curricula and didactic strategies. This article identified some important points of attention and some options to deal with these in order to continuously improve the contribution of MPA programs to relevant and effective professional development and ongoing professional learning

    Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer

    Get PDF
    Block copolymers composed of poly(oligo ethylene glycol methyl ether methacrylate) and poly(2-vinylpyridine) are disordered in the neat state but can be induced to order by protonation of the P2VP block, demonstrating a tunable and responsive method for triggering assembly in thin films. Comparison of protonation with the addition of salts shows that microphase separation is due to selective protonation of the P2VP block. Increasing acid incorporation and increasing 2-vinylpyridine content for P2VP minority copolymers both promote increasingly phase-separated morphologies, consistent with protonation increasing the effective strength of segregation between the two blocks. The self-assembled nanostructures formed after casting from acidic solutions may be tuned based on the amount and type of acid incorporation as well as the annealing treatment applied after casting, where both aqueous and polar organic solvents are shown to be effective. Therefore, POEGMA-b-P2VP is a novel ion-containing block copolymer whose morphologies can be facilely tuned during casting and processing by controlling its exposure to acid.United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0001088)National Science Foundation (U.S.) (Award CMMI-1246740

    Thermal variational principle and gauge fields

    Get PDF
    A Feynman-Jensen version of the thermal variational principle is applied to hot gauge fields, Abelian as well as non-Abelian: scalar electrodynamics (without scalar self-coupling) and the gluon plasma. The perturbatively known self-energies are shown to derive by variation from a free quadratic (''Gaussian'') trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (within the order g3g^3 studied) after a reformulation of the partition function such that it depends on only even powers of the gauge field. Also static properties (Debye screening) are reproduced this way. But because of the present need to expand the variational functional, the method falls short of its potential nonperturbative power.Comment: 36 pages, LaTeX, no figures. Updated version: new title, section on static properties and some references adde
    corecore